Non-Abelian Hopf Cohomology of Radford Products

被引:0
作者
Nuss, Philippe [1 ,2 ]
Wambst, Marc [1 ,2 ]
机构
[1] Univ Strasbourg, Inst Rech Math Avancee, F-67084 Strasbourg, France
[2] CNRS, F-67084 Strasbourg, France
关键词
Non-abelian cohomology; Radford products; Hopf comodule algebra; Cosimplicial non-abelian groups; Taft algebras; ALGEBRAS;
D O I
10.1007/s10468-011-9296-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the non-abelian Hopf cohomology theory of Radford products with coefficients in a comodule algebra. We show that these sets can be expressed in terms of the non-abelian Hopf cohomology theory of each factor of the Radford product. We write down an exact sequence relating these objects. This allows to compute explicitly the non-abelian Hopf cohomology sets in large classes of examples.
引用
收藏
页码:977 / 1002
页数:26
相关论文
共 50 条
[11]   Non-abelian cohomology of extensions of Lie algebras as Deligne groupoid [J].
Fregier, Yael .
JOURNAL OF ALGEBRA, 2014, 398 :243-257
[12]   Non-abelian cohomology of Lie H-pseudoalgebras and inducibility of automorphisms [J].
Das, Apurba .
JOURNAL OF GEOMETRY AND PHYSICS, 2025, 214
[13]   Cup products in Hopf cyclic cohomology with coefficients in contramodules [J].
Rangipour, Bahram .
NONCOMMUTATIVE GEOMETRY AND GLOBAL ANALYSIS, 2011, 546 :271-282
[14]   Lifting problems and transgression for non-abelian gerbes [J].
Nikolaus, Thomas ;
Waldorf, Konrad .
ADVANCES IN MATHEMATICS, 2013, 242 :50-79
[15]   Non-Abelian extensions of topological lie algebras [J].
Neeb, KH .
COMMUNICATIONS IN ALGEBRA, 2006, 34 (03) :991-1041
[16]   Non-abelian extensions of pre-Lie algebras [J].
Ma, Qingfeng ;
Song, Lina ;
Wang, You .
COMMUNICATIONS IN ALGEBRA, 2023, 51 (04) :1370-1382
[17]   Non-abelian tensor product and homology of Lie superalgebras [J].
Garcia-Martinez, Xabier ;
Khraaladze, Emzar ;
Ladra, Manuel .
JOURNAL OF ALGEBRA, 2015, 440 :464-488
[18]   Calogero model for the non-Abelian quantum Hall effect [J].
Bourgine, Jean-Emile ;
Matsuo, Yutaka .
PHYSICAL REVIEW B, 2024, 109 (15)
[19]   Radford's theorem about Hopf braces [J].
Zhu, Haixing ;
Ying, Zhiling .
COMMUNICATIONS IN ALGEBRA, 2022, 50 (04) :1426-1440
[20]   Hall viscosity in the non-Abelian quantum Hall matrix model [J].
Lapa, Matthew F. ;
Turner, Carl ;
Hughes, Taylor L. ;
Tong, David .
PHYSICAL REVIEW B, 2018, 98 (07)