Darboux transformations of integrable couplings and applications

被引:73
作者
Ma, Wen-Xiu [1 ,2 ,3 ,4 ]
Zhang, Yu-Juan [5 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[3] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
[4] North West Univ, Dept Math Sci, Int Inst Symmetry Anal & Math Modelling, Mafikeng Campus,Private Bag X2046, ZA-2735 Mmabatho, South Africa
[5] Xidian Univ, Sch Math & Stat, Xian 710071, Shaanxi, Peoples R China
基金
上海市自然科学基金; 美国国家科学基金会;
关键词
Matrix spectral problem; integrable coupling; Darboux transformation; non-semisimple Lie algebra; soliton; SEMIDIRECT SUMS; LIE-ALGEBRAS; HAMILTONIAN STRUCTURES; SOLITON HIERARCHY; LOOP ALGEBRAS; EQUATIONS; EVOLUTION; SYSTEMS;
D O I
10.1142/S0129055X18500034
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A formulation of Darboux transformations is proposed for integrable couplings, based on non-semisimple matrix Lie algebras. Applications to a kind of integrable couplings of the AKNS equations are made, along with an explicit formula for the associated Backlund transformation. Exact one-soliton-like solutions are computed for the integrable couplings of the second- and third-order AKNS equations, and a type of reduction is created to generate integrable couplings and their one-soliton-like solutions for the NLS and MKdV equations.
引用
收藏
页数:26
相关论文
共 42 条
[1]  
Ablowitz M.J., 1991, Nonlinear Evolution Equations and Inverse Scattering
[2]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[3]  
Chen D. Y., 2006, INTRO SOLITONS
[4]  
Drinfeld V G., 1981, Sov. Math. Dokl, V23, P457
[5]  
FOKAS AS, 1987, STUD APPL MATH, V77, P253
[6]  
Frappat L., 2000, DICT LIE ALGEBRAS SU
[7]  
Fuchssteiner B., 1979, NONLINEAR ANAL THEOR, V3, P849, DOI [10.1016/0362-546X(79)90052-X, DOI 10.1016/0362-546X(79)90052-X]
[8]   NEW SOLITONS CONNECTED TO THE DIRAC-EQUATION [J].
GROSSE, H .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1986, 134 (5-6) :297-304
[9]  
Gu C., 2004, Darboux Transformations in Integrable Systems: Theory and Their Applications to Geometry
[10]   Nonlinear Schrodinger equation: Generalized Darboux transformation and rogue wave solutions [J].
Guo, Boling ;
Ling, Liming ;
Liu, Q. P. .
PHYSICAL REVIEW E, 2012, 85 (02)