P1-NONCONFORMING FINITE ELEMENTS ON TRIANGULATIONS INTO TRIANGLES AND QUADRILATERALS

被引:13
作者
Altmann, R. [1 ]
Carstensen, C. [2 ,3 ]
机构
[1] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
[2] Humboldt Univ, Inst Math, D-10099 Berlin, Germany
[3] Yonsei Univ, Dept Computat Sci & Engn, Seoul 120749, South Korea
关键词
nonconforming finite elements; elliptic problems; a priori estimates;
D O I
10.1137/110823675
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The P-1-nonconforming finite element is introduced for arbitrary triangulations into quadrilaterals and triangles of multiple connected Lipschitz domains. An explicit a priori analysis for the combination of the Park-Sheen and the Crouzeix-Raviart nonconforming finite element methods is given for second-order elliptic PDEs with inhomogeneous Dirichlet boundary conditions.
引用
收藏
页码:418 / 438
页数:21
相关论文
共 11 条
[1]  
[Anonymous], 1985, MONOGR STUD MATH
[2]  
[Anonymous], 1960, Arch. Rational Mech. Anal., DOI DOI 10.1007/BF00252910
[3]   An optimally convergent adaptive mixed finite element method [J].
Becker, Roland ;
Mao, Shipeng .
NUMERISCHE MATHEMATIK, 2008, 111 (01) :35-54
[4]  
Brenner S.C., 2008, MATH THEORY FINITE E, V15
[5]  
CARSTENSEN C., 2011, J COMPUT MATH UNPUB
[6]  
CIARLET P. G., 2002, Classics in Appl. Math., V40
[7]  
CROUZEIX M., 1973, MATH ANAL NUMER, V7, P33
[8]   A convergent adaptive algorithm for Poisson's equation [J].
Dorfler, W .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (03) :1106-1124
[9]   P1-nonconforming quadrilateral finite element methods for second-order elliptic problems [J].
Park, C ;
Sheen, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (02) :624-640
[10]  
PARK C., 2003, THESIS SEOUL NATL U