Cavity-based photoconductive sources for real-time terahertz imaging

被引:13
作者
Hawecker, J. [1 ]
Pistore, V [1 ]
Minasyan, A. [2 ]
Maussang, K. [1 ,4 ]
Palomo, J. [1 ]
Sagnes, I [3 ]
Manceau, J-M [3 ]
Colombelli, R. [3 ]
Tignon, J. [1 ]
Mangeney, J. [1 ]
Dhillon, S. S. [1 ]
机构
[1] Univ Paris, Sorbonne Univ, Univ PSL, Lab Phys,Ecole Normale Super,ENS,CNRS, F-75005 Paris, France
[2] i2S, 28-30 Rue Jean Perrin, F-33608 Pessac, France
[3] Univ Paris Saclay, CNRS UMR 9001, Ctr Nanosci & Nanotechnol C2N, F-91120 Palaiseau, France
[4] Univ Montpellier, CNRS UMR 5214, Inst Elect & Syst, 860 Rue St Priest, F-34095 Montpellier 5, France
基金
欧盟地平线“2020”;
关键词
Metal insulator boundaries - Photoconductive switches;
D O I
10.1364/PRJ.388219
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optically driven photoconductive switches are one of the predominant sources currently used in terahertz imaging systems. However, owing to their low average powers, only raster-based images can be taken, resulting in slow acquisition. In this work, we show that by placing a photoconductive switch within a cavity, we are able to generate absolute average THz powers of 181 mu W with the frequency of the THz emission centered at 1.5 THz-specifications ideally adapted to applications such as non-destructive imaging. The cavity is based on a metal-insulator-metal structure that permits an enhancement of the average power by almost 1 order of magnitude compared to a standard structure, while conserving a broadband spectral response. We demonstrate proof-of-principle real-time imaging using this source, with the broadband spectrum permitting to eliminate strong diffraction artifacts. (C) 2020 Chinese Laser Press
引用
收藏
页码:858 / 863
页数:6
相关论文
共 19 条
[1]   High-speed THz spectroscopic imaging at ten kilohertz pixel rate with amplitude and phase contrast [J].
Beck, M. ;
Ploetzing, T. ;
Maussang, K. ;
Palomo, J. ;
Colombelli, R. ;
Sagnes, I. ;
Mangeney, J. ;
Tignon, J. ;
Dhillon, S. S. ;
Klatt, G. ;
Bartels, A. .
OPTICS EXPRESS, 2019, 27 (08) :10866-10872
[2]   Real-time imaging using a 2.8 THz quantum cascade laser and uncooled infrared micrometer camera [J].
Behnken, Barry N. ;
Karunasiri, Gamani ;
Chamberlin, Danielle R. ;
Robrish, Peter R. ;
Faist, Jerome .
OPTICS LETTERS, 2008, 33 (05) :440-442
[3]   Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas [J].
Berry, Christopher W. ;
Hashemi, Mohammad R. ;
Jarrahi, Mona .
APPLIED PHYSICS LETTERS, 2014, 104 (08)
[4]   Review of terahertz photoconductive antenna technology [J].
Burford, Nathan M. ;
El-Shenawee, Magda O. .
OPTICAL ENGINEERING, 2017, 56 (01)
[5]   Opening the Terahertz window with integrated diode circuits [J].
Crowe, TW ;
Bishop, WL ;
Porterfield, DW ;
Hesler, JL ;
Weikle, RM .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2005, 40 (10) :2104-2110
[6]   The 2017 terahertz science and technology roadmap [J].
Dhillon, S. S. ;
Vitiello, M. S. ;
Linfield, E. H. ;
Davies, A. G. ;
Hoffmann, Matthias C. ;
Booske, John ;
Paoloni, Claudio ;
Gensch, M. ;
Weightman, P. ;
Williams, G. P. ;
Castro-Camus, E. ;
Cumming, D. R. S. ;
Simoens, F. ;
Escorcia-Carranza, I. ;
Grant, J. ;
Lucyszyn, Stepan ;
Kuwata-Gonokami, Makoto ;
Konishi, Kuniaki ;
Koch, Martin ;
Schmuttenmaer, Charles A. ;
Cocker, Tyler L. ;
Huber, Rupert ;
Markelz, A. G. ;
Taylor, Z. D. ;
Wallace, Vincent P. ;
Zeitler, J. Axel ;
Sibik, Juraj ;
Korter, Timothy M. ;
Ellison, B. ;
Rea, S. ;
Goldsmith, P. ;
Cooper, Ken B. ;
Appleby, Roger ;
Pardo, D. ;
Huggard, P. G. ;
Krozer, V. ;
Shams, Haymen ;
Fice, Martyn ;
Renaud, Cyril ;
Seeds, Alwyn ;
Stoehr, Andreas ;
Naftaly, Mira ;
Ridler, Nick ;
Clarke, Roland ;
Cunningham, John E. ;
Johnston, Michael B. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (04)
[7]   64 μW pulsed terahertz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions [J].
Dietz, Roman J. B. ;
Globisch, Bjoern ;
Gerhard, Marina ;
Velauthapillai, Ajanthkrishna ;
Stanze, Dennis ;
Roehle, Helmut ;
Koch, Martin ;
Goebel, Thorsten ;
Schell, Martin .
APPLIED PHYSICS LETTERS, 2013, 103 (06)
[8]   High-intensity terahertz radiation from a microstructured large-area photoconductor [J].
Dreyhaupt, A ;
Winnerl, S ;
Dekorsy, T ;
Helm, M .
APPLIED PHYSICS LETTERS, 2005, 86 (12) :1-3
[9]   Absolute terahertz power measurement of a time-domain spectroscopy system [J].
Globisch, Bjoern ;
Dietz, Roman J. B. ;
Goebel, Thorsten ;
Schell, Martin ;
Bohmeyer, Werner ;
Mueller, Ralf ;
Steiger, Andreas .
OPTICS LETTERS, 2015, 40 (15) :3544-3547
[10]   Toward real-time terahertz imaging [J].
Guerboukha, Hichem ;
Nallappan, Kathirvel ;
Skorobogatiy, Maksim .
ADVANCES IN OPTICS AND PHOTONICS, 2018, 10 (04) :843-938