Closed-Form Solutions for the Trajectories of Charged Particles in an Exponentially Varying Magnetostatic Field

被引:1
作者
van Vugt, D. C. [1 ]
Kamp, L. P. J. [1 ]
Huijsmans, G. T. A. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
关键词
Closed-form solutions; magnetic fields; particle beams; particle tracking; system verification; MOTION;
D O I
10.1109/TPS.2018.2878459
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a new reference solution for charged particle motion in a strongly inhomogeneous magnetostatic field. The solution describes both bound and unbound particle motion, which can be split into three regimes, the deflection, loop-deflection, and drift regime. We calculate the trajectory in terms of trigonometric and hyperbolic functions, resulting in simple analytical expressions for the particle position and del B-drift velocity. This reference solution is useful to verify and compare the performance of kinetic and guiding-center charged particle pushers in inhomogeneous fields by verifying the conservation of two constants of motion, as well as the exact trajectory at any time.
引用
收藏
页码:296 / 299
页数:4
相关论文
共 17 条
[1]  
[Anonymous], 2004, SERIES PLASMA PHYS F
[2]  
Bittencourt J.A., 2013, Fundamentals of plasma physics
[3]  
Boris J. P., 1970, P 4 C NUM SIM PLASM, P3
[4]  
Buneman O., 1967, J. Comput. Phys., V1, P517, DOI DOI 10.1016/0021-9991(67)90056-3
[5]   Symplectic and energy-conserving algorithms for solving magnetic field trajectories [J].
Chin, Siu A. .
PHYSICAL REVIEW E, 2008, 77 (06)
[6]  
Clemmow P. C., 1969, Electrodynamics of Particles and Plasmas
[7]   On the integration of equations of motion for particle-in-cell codes [J].
Fuchs, V ;
Gunn, JP .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 214 (01) :299-315
[8]  
Genoni T.C., 2010, Open Plasma Phys. J., V3, P36, DOI DOI 10.2174/1876534301003010036
[9]   High order volume-preserving algorithms for relativistic charged particles in general electromagnetic fields [J].
He, Yang ;
Sun, Yajuan ;
Zhang, Ruili ;
Wang, Yulei ;
Liu, Jian ;
Qin, Hong .
PHYSICS OF PLASMAS, 2016, 23 (09)
[10]   Higher order volume-preserving schemes for charged particle dynamics [J].
He, Yang ;
Sun, Yajuan ;
Liu, Jian ;
Qin, Hong .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 305 :172-184