Spectroscopic Remote Sensing of Non-Structural Carbohydrates in Forest Canopies

被引:31
作者
Asner, Gregory P. [1 ]
Martin, Roberta E. [1 ]
机构
[1] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA 94305 USA
关键词
IMAGING SPECTROSCOPY; WIDE-RANGE; LEAF; REFLECTANCE; CARBON; NITROGEN; LEAVES; MODEL;
D O I
10.3390/rs70403526
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Non-structural carbohydrates (NSC) are products of photosynthesis, and leaf NSC concentration may be a prognostic indicator of climate-change tolerance in woody plants. However, measurement of leaf NSC is prohibitively labor intensive, especially in tropical forests, where foliage is difficult to access and where NSC concentrations vary enormously by species and across environments. Imaging spectroscopy may allow quantitative mapping of leaf NSC, but this possibility remains unproven. We tested the accuracy of NSC remote sensing at leaf, canopy and stand levels using visible-to-shortwave infrared (VSWIR) spectroscopy with partial least squares regression (PLSR) techniques. Leaf-level analyses demonstrated the high precision (R-2 = 0.69-0.73) and accuracy (%RMSE = 13%-14%) of NSC estimates in 6136 live samples taken from 4222 forest canopy species worldwide. The leaf spectral data were combined with a radiative transfer model to simulate the role of canopy structural variability, which led to a reduction in the precision and accuracy of leaf NSC estimation (R-2 = 0.56; %RMSE = 16%). Application of the approach to 79 one-hectare plots in Amazonia using the Carnegie Airborne Observatory VSWIR spectrometer indicated the good precision and accuracy of leaf NSC estimates at the forest stand level (R-2 = 0.49; %RMSE = 9.1%). Spectral analyses indicated strong contributions of the shortwave-IR (1300-2500 nm) region to leaf NSC determination at all scales. We conclude that leaf NSC can be remotely sensed, opening doors to monitoring forest canopy physiological responses to environmental stress and climate change.
引用
收藏
页码:3526 / 3547
页数:22
相关论文
共 42 条
[1]  
Aber J.D., 1991, TERRESTRIAL ECOSYSTE, P429
[2]  
Asner G.P., 2004, REMOTE SENSING NATUR, V4, P53
[3]   Global synthesis of leaf area index observations: implications for ecological and remote sensing studies [J].
Asner, GP ;
Scurlock, JMO ;
Hicke, JA .
GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2003, 12 (03) :191-205
[4]   Biophysical and biochemical sources of variability in canopy reflectance [J].
Asner, GP .
REMOTE SENSING OF ENVIRONMENT, 1998, 64 (03) :234-253
[5]   Spectral and chemical analysis of tropical forests: Scaling from leaf to canopy levels [J].
Asner, Gregory P. ;
Martin, Roberta E. .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (10) :3958-3970
[6]   Quantifying forest canopy traits: Imaging spectroscopy versus field survey [J].
Asner, Gregory P. ;
Martin, Roberta E. ;
Anderson, Christopher B. ;
Knapp, David E. .
REMOTE SENSING OF ENVIRONMENT, 2015, 158 :15-27
[7]   Amazonian functional diversity from forest canopy chemical assembly [J].
Asner, Gregory P. ;
Martin, Roberta E. ;
Tupayachi, Raul ;
Anderson, Christopher B. ;
Sinca, Felipe ;
Carranza-Jimenez, Loreli ;
Martinez, Paola .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (15) :5604-5609
[8]   Carnegie Airborne Observatory-2: Increasing science data dimensionality via high-fidelity multi-sensor fusion [J].
Asner, Gregory P. ;
Knapp, David E. ;
Boardman, Joseph ;
Green, Robert O. ;
Kennedy-Bowdoin, Ty ;
Eastwood, Michael ;
Martin, Roberta E. ;
Anderson, Christopher ;
Field, Christopher B. .
REMOTE SENSING OF ENVIRONMENT, 2012, 124 :454-465
[9]   Spectroscopy of canopy chemicals in humid tropical forests [J].
Asner, Gregory P. ;
Martin, Roberta E. ;
Knapp, David E. ;
Tupayachi, Raul ;
Anderson, Christopher ;
Carranza, Loreli ;
Martinez, Paola ;
Houcheime, Mona ;
Sinca, Felipe ;
Weiss, Parker .
REMOTE SENSING OF ENVIRONMENT, 2011, 115 (12) :3587-3598
[10]   Canopy phylogenetic, chemical and spectral assembly in a lowland Amazonian forest [J].
Asner, Gregory P. ;
Martin, Roberta E. .
NEW PHYTOLOGIST, 2011, 189 (04) :999-1012