Spatiotemporal image fusion using multiscale attention-aware two-stream convolutional neural networks

被引:6
作者
Chen, Yuehong [1 ]
Ge, Yong [2 ]
机构
[1] Hohai Univ, Coll Hydrol & Water Resources, Nanjing 210098, Peoples R China
[2] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China
来源
SCIENCE OF REMOTE SENSING | 2022年 / 6卷
基金
中国国家自然科学基金;
关键词
Spatiotemporal fusion; Convolutional neural networks; Multiscale; Attention; Remote sensing imagery; SATELLITE IMAGES; TIME-SERIES; REFLECTANCE; MODIS; LANDSAT;
D O I
10.1016/j.srs.2022.100062
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Spatiotemporal fusion (STF) is considered as a promising way to produce remote sensing images at fine scales in both space and time by blending two types of satellite images. The learning-based STF approaches with deep convolutional neural networks can provide the unified framework to address both gradual and abrupt changes. This paper intends to develop an enhanced learning-based STF using multiscale attention-aware two-stream convolutional neural networks (MACNN). With a coarse image at the prediction date and two pairs of coarse and fine images at other dates as inputs, it employs a multiscale module to characterize different sizes of objects and a spatial and channel attention module to emphasize important information in feature learning. Two experiments on real Landsat and MODIS images are conducted to demonstrate the effectiveness of the proposed MACNN and it outperforms four existing STF methods in both visual and quantitative.
引用
收藏
页数:10
相关论文
共 39 条
[1]   Downscaling in remote sensing [J].
Atkinson, Peter M. .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2013, 22 :106-114
[2]   Spatiotemporal Image Fusion in Remote Sensing [J].
Belgiu, Mariana ;
Stein, Alfred .
REMOTE SENSING, 2019, 11 (07)
[3]   A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter [J].
Chen, J ;
Jönsson, P ;
Tamura, M ;
Gu, ZH ;
Matsushita, B ;
Eklundh, L .
REMOTE SENSING OF ENVIRONMENT, 2004, 91 (3-4) :332-344
[4]  
Chen LC, 2017, Arxiv, DOI [arXiv:1706.05587, 10.48550/arXiv.1706.05587]
[5]   Spatiotemporal Remote Sensing Image Fusion Using Multiscale Two-Stream Convolutional Neural Networks [J].
Chen, Yuehong ;
Shi, Kaixin ;
Ge, Yong ;
Zhou, Ya'nan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[6]   Subpixel Land Cover Mapping Using Multiscale Spatial Dependence [J].
Chen, Yuehong ;
Ge, Yong ;
Chen, Yu ;
Jin, Yan ;
An, Ru .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (09) :5097-5106
[7]  
Chen YH, 2018, IEEE T GEOSCI REMOTE, V56, P328, DOI [10.1109/TGRS.2017.2747624, 10.1109/tgrs.2017.2747624]
[8]   Accelerating the Super-Resolution Convolutional Neural Network [J].
Dong, Chao ;
Loy, Chen Change ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 :391-407
[9]   Learning a Deep Convolutional Network for Image Super-Resolution [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 :184-199
[10]   Satellites reveal contrasting responses of regional climate to the widespread greening of Earth [J].
Forzieri, Giovanni ;
Alkama, Ramdane ;
Miralles, Diego G. ;
Cescatti, Alessandro .
SCIENCE, 2017, 356 (6343) :1140-1144