Asymptotics for return times of rank-one systems

被引:5
作者
Chaumoître, V
Kupsa, M
机构
[1] Univ Picardie Jules Verne, LAMFA, UMR 6140, F-80000 Amiens, France
[2] Ctr Phys Theor, F-13288 Marseille, France
[3] Charles Univ, Fac Math & Phys, Dept Theoret Comp Sci & Math Log, Prague 118 1, Czech Republic
关键词
asymptotics; return times; rank-one; staircase transformation; mixing;
D O I
10.1142/S0219493705001298
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We give a condition for nonperiodic rank-one systems to have non-exponential asymptotic distribution (equal to 1([1,infinity])) of return times along subsequences of cylinders. Applying this result to the staircase transformation, we derive mixing dynamical systems with non-exponential asymptotics. Moreover, we show for two columns rank-one systems unique asymptotic along full sequences of cylinders.
引用
收藏
页码:65 / 73
页数:9
相关论文
共 21 条
[1]  
Abadi M., 2001, MARKOV PROCESS RELAT, V7, P97
[2]   Smorodinsky's conjecture on rank-one mixing [J].
Adams, TM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (03) :739-744
[3]  
[Anonymous], 1995, DYN SYST CHAOS
[4]   Return time statistics via inducing [J].
Bruin, H ;
Saussol, B ;
Troubetzkoy, S ;
Vaienti, S .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 :991-1013
[6]   ASYMPTOTIC LIMIT LAW FOR THE CLOSE APPROACH OF 2 TRAJECTORIES IN EXPANDING MAPS OF THE CIRCLE [J].
COELHO, Z ;
COLLET, P .
PROBABILITY THEORY AND RELATED FIELDS, 1994, 99 (02) :237-250
[7]  
Coelho Z, 2000, LOND MATH S, V279, P123
[8]  
COELHO Z, 1996, ISRAEL J MATH, V93, P73
[9]   STATISTICS OF CLOSE VISITS TO THE INDIFFERENT FIXED-POINT OF AN INTERVAL MAP [J].
COLLET, P ;
GALVES, A .
JOURNAL OF STATISTICAL PHYSICS, 1993, 72 (3-4) :459-478
[10]   Limit laws of entrance times for low-complexity Canter minimal systems [J].
Durand, F ;
Maass, A .
NONLINEARITY, 2001, 14 (04) :683-700