Density-functional theory simulation of large quantum dots

被引:33
作者
Jiang, H [1 ]
Baranger, HU
Yang, WT
机构
[1] Duke Univ, Dept Chem, Durham, NC 27708 USA
[2] Duke Univ, Dept Phys, Durham, NC 27708 USA
[3] Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China
关键词
D O I
10.1103/PhysRevB.68.165337
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Kohn-Sham spin-density functional theory provides an efficient and accurate model to study electron-electron interaction effects in quantum dots, but its application to large systems is a challenge. Here an efficient method for the simulation of quantum dots using density-function theory is developed; it includes the particle-in-the-box representation of the Kohn-Sham orbitals, an efficient conjugate-gradient method to directly minimize the total energy, a Fourier convolution approach for the calculation of the Hartree potential, and a simplified multigrid technique to accelerate the convergence. We test the methodology in a two-dimensional model system and show that numerical studies of large quantum dots with several hundred electrons become computationally affordable. In the noninteracting limit, the classical dynamics of the system we study can be continuously varied from integrable to fully chaotic. The qualitative difference in the noninteracting classical dynamics has an effect on the quantum properties of the interacting system: integrable classical dynamics leads to higher-spin states and a broader distribution of spacing between Coulomb blockade peaks.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] DENSITY-FUNCTIONAL THEORY
    PARR, RG
    [J]. CHEMICAL & ENGINEERING NEWS, 1990, 68 (29) : 45 - 45
  • [22] DENSITY-FUNCTIONAL THEORY OF QUANTUM FREEZING AND THE HELIUM-ISOTOPES
    RICK, SW
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1995, 209 : 8 - PHYS
  • [23] Quantum-mechanical interpretation of density-functional theory.
    Sahni, V
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1997, 213 : 84 - COMP
  • [24] Density functional theory of quantum dots in a magnetic field
    Ferconi, M
    Vignale, G
    [J]. ATOMS AND MOLECULES IN STRONG EXTERNAL FIELDS, 1998, : 313 - 318
  • [25] Density-functional tight binding - an approximate density-functional theory method
    Seifert, Gotthard
    Joswig, Jan-Ole
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2012, 2 (03) : 456 - 465
  • [26] Enhancing density-functional theory for static correlation in large molecules
    Gibney, Daniel
    Boyn, Jan-Niklas
    Mazziotti, David A.
    [J]. PHYSICAL REVIEW A, 2024, 110 (04)
  • [27] First-principle Study of Quantum Confinement Effect on Small Sized Silicon Quantum Dots using Density-Functional Theory
    Anas, M. M.
    Othman, A. P.
    Gopir, G.
    [J]. 2014 UKM FST POSTGRADUATE COLLOQUIUM: PROCEEDINGS OF THE UNIVERSITI KEBANGSAAN MALAYSIA, FACULTY OF SCIENCE AND TECHNOLOGY 2014 POSTGRADUATE COLLOQUIUM, 2014, 1614 : 104 - 109
  • [28] Density-functional theory vs density-functional fits: The best of both
    Becke, Axel D.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2022, 157 (23)
  • [29] Quantum-Electrodynamical Density-Functional Theory Exemplified by the Quantum Rabi Model
    Bakkestuen, Vebjorn H.
    Falmar, Vegard
    Lotfigolian, Maryam
    Penz, Markus
    Ruggenthaler, Michael
    Laestadius, Andre
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2025, 129 (09) : 2337 - 2360
  • [30] Implicit density-functional theory
    Liu, Bin
    Percus, Jerome K.
    [J]. PHYSICAL REVIEW A, 2006, 74 (01):