Classification of Granite Soils and Prediction of Soil Water Content Using Hyperspectral Visible and Near-Infrared Imaging

被引:9
|
作者
Lim, Hwan-Hui [1 ]
Cheon, Enok [1 ]
Lee, Deuk-Hwan [1 ]
Jeon, Jun-Seo [2 ,3 ]
Lee, Seung-Rae [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Civil & Environm Engn, Daejeon 34141, South Korea
[2] Korea Inst Civil Engn & Bldg Technol, Bldg Safety Res Ctr, Daejeon 34141, South Korea
[3] Korea Inst Civil Engn & Bldg Technol, Seism Safety Res Ctr, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
granite soils; water content; hyperspectral camera; visible and near-infrared; soil water characteristic curve; artificial neural network; QUALITY; COLOR;
D O I
10.3390/s20061611
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Soil water content is one of the most important physical indicators of landslide hazards. Therefore, quickly and non-destructively classifying soils and determining or predicting water content are essential tasks for the detection of landslide hazards. We investigated hyperspectral information in the visible and near-infrared regions (400-1000 nm) of 162 granite soil samples collected from Seoul (Republic of Korea). First, effective wavelengths were extracted from pre-processed spectral data using the successive projection algorithm to develop a classification model. A gray-level co-occurrence matrix was employed to extract textural variables, and a support vector machine was used to establish calibration models and the prediction model. The results show that an optimal correct classification rate of 89.8% could be achieved by combining data sets of effective wavelengths and texture features for modeling. Using the developed classification model, an artificial neural network (ANN) model for the prediction of soil water content was constructed. The input parameter was composed of Munsell soil color, area of reflectance (near-infrared), and dry unit weight. The accuracy in water content prediction of the developed ANN model was verified by a coefficient of determination and mean absolute percentage error of 0.91 and 10.1%, respectively.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Prediction of sorghum oil content using near-infrared hyperspectral imaging
    Mendoza, Princess Tiffany D.
    Armstrong, Paul R.
    Peiris, Kamaranga H. S.
    Siliveru, Kaliramesh
    Bean, Scott R.
    Pordesimo, Lester O.
    CEREAL CHEMISTRY, 2023, 100 (03) : 775 - 783
  • [2] PREDICTION OF SOIL LEAD CONTENT USING VISIBLE AND NEAR-INFRARED SPECTROSCOPY
    Zhang, Xia
    Sun, Weichao
    Qi, Wenchao
    Wu, Xing
    2018 9TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2018,
  • [3] Development of Visible/Near-Infrared Hyperspectral Imaging for the Prediction of Total Arsenic Concentration in Soil
    Wei, Lifei
    Zhang, Yangxi
    Yuan, Ziran
    Wang, Zhengxiang
    Yin, Feng
    Cao, Liqin
    APPLIED SCIENCES-BASEL, 2020, 10 (08):
  • [4] Visible/near-infrared hyperspectral imaging for beef tenderness prediction
    Naganathan, Govindarajan Konda
    Grimes, Lauren M.
    Subbiah, Jeyamkondan
    Calkins, Chris R.
    Samal, Ashok
    Meyer, George E.
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2008, 64 (02) : 225 - 233
  • [5] Mapping of Leaf Water Content Using Near-Infrared Hyperspectral Imaging
    Higa, Sakura
    Kobori, Hikaru
    Tsuchikawa, Satoru
    APPLIED SPECTROSCOPY, 2013, 67 (11) : 1302 - 1307
  • [6] Estimating Soil Arsenic Content with Visible and Near-Infrared Hyperspectral Reflectance
    Han, Lei
    Chen, Rui
    Zhu, Huili
    Zhao, Yonghua
    Liu, Zhao
    Huo, Hong
    SUSTAINABILITY, 2020, 12 (04)
  • [7] Modeling for mung bean variety classification using visible and near-infrared hyperspectral imaging
    Xie, Chuanqi
    He, Yong
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND BIOLOGICAL ENGINEERING, 2018, 11 (01) : 187 - 191
  • [8] Moisture content detection of maize seed based on visible/near-infrared and near-infrared hyperspectral imaging technology
    Zhang, Yanmin
    Guo, Wenchuan
    INTERNATIONAL JOURNAL OF FOOD SCIENCE AND TECHNOLOGY, 2020, 55 (02): : 631 - 640
  • [9] Tenderness classification of fresh broiler breast fillets using visible and near-infrared hyperspectral imaging
    Jiang, Hongzhe
    Yoon, Seung-Chul
    Zhuang, Hong
    Wang, Wei
    Lawrence, Kurt C.
    Yang, Yi
    MEAT SCIENCE, 2018, 139 : 82 - 90
  • [10] Classification of pulse flours using near-infrared hyperspectral imaging
    Sivakumar, Chitra
    Chaudhry, Muhammad Mudassir Arif
    Paliwal, Jitendra
    LWT-FOOD SCIENCE AND TECHNOLOGY, 2022, 154