A Solid Oxide Fuel Cell-Gas Turbine Hybrid System for a Freight Rail Application

被引:0
|
作者
Ahrend, Philipp [1 ]
Azizi, Ali [1 ]
Brouwer, Jacob [1 ]
Samuelsen, G. Scott [1 ]
机构
[1] Univ Calif Irvine, Irvine, CA 92697 USA
来源
PROCEEDINGS OF THE ASME 13TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2019 | 2019年
关键词
FEASIBILITY;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The simulation of a Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) hybrid system for a locomotive application is presented. Using Matlab Simulink, a 2.8 MW SOFC system was combined with a 500 kW GT and simulated to travel the route from Bakersfield to Mojave in California. Elevation data was imported using the Google API Console and smoothed in order to calculate the dynamic power demand for the SOFC-GT system, assuming 480 tons of freight per 120 ton locomotive traveling at an average speed of 45 mph. The SOFC-GT system model follows this demand without causing a significant disruption to the speed of the locomotive. A lithium-ion battery was included into the system model to improve the net system efficiency and make the operation smooth enough for the highly dynamic route. The overall efficiency along the simulated route has been calculated as 57% operating on partially pre-reformed natural gas fuel. These results suggest the development of a physical prototype of the simulated system and are very promising for the future of freight rail transportation throughout the US. CO2 and particulate matter emissions are significantly reduced compared to current diesel-electric locomotives and it is also possible to operate the system on hydrogen, i.e., completely emission-free. A techno-economic analysis to assess the economic feasibility of this system is currently being prepared.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Application analysis of a hybrid solid oxide fuel cell-gas turbine system for marine power plants
    Serbin, Serhiy
    Washchilenko, Nikolay
    Cherednichenko, Oleksandr
    Burunsuz, Kateryna
    Dzida, Marek
    Chen, Daifen
    SHIPS AND OFFSHORE STRUCTURES, 2022, 17 (04) : 866 - 876
  • [2] Performance Study of Hybrid Solid Oxide Fuel Cell-Gas Turbine Power System
    Zhao, Hongbin
    Liu, Xu
    ACHIEVEMENTS IN ENGINEERING MATERIALS, ENERGY, MANAGEMENT AND CONTROL BASED ON INFORMATION TECHNOLOGY, PTS 1 AND 2, 2011, 171-172 : 319 - 322
  • [3] System configuration and performance studies of solid oxide fuel cell-gas turbine hybrid cycle
    Jiang, Wei
    Fang, Ruixian
    Khan, Jamil A.
    Dougal, Roger A.
    PROCEEDINGS OF THE ASME/JSME THERMAL ENGINEERING SUMMER HEAT TRANSFER CONFERENCE 2007, VOL 2, 2007, : 63 - 70
  • [4] Performance evaluation of intermediate temperature solid oxide fuel cell-gas turbine hybrid power system
    Bavirisetti, Sushanth
    Sahu, Mithilesh Kumar
    WORLD JOURNAL OF ENGINEERING, 2023, 20 (01) : 186 - 195
  • [5] Exergy Analysis and Optimization of Gasifier-Solid Oxide Fuel Cell-Gas Turbine Hybrid System
    Nandwana, Dev
    Raj, Amrit
    Kadkade, Tejas Deepak
    Sreekanth, Manavalla
    INTERNATIONAL ENERGY JOURNAL, 2019, 19 (04): : 233 - 242
  • [6] The Development and Application of a Novel Optimisation Strategy for Solid Oxide Fuel Cell-Gas Turbine Hybrid Cycles
    Zhao, Y.
    Shah, N.
    Brandon, N.
    FUEL CELLS, 2010, 10 (01) : 181 - 193
  • [7] Analysis of a pressurized solid oxide fuel cell-gas turbine hybrid power system with cathode gas recirculation
    Saebea, Dang
    Patcharavorachot, Yaneeporn
    Assabumrungrat, Suttichai
    Arpornwichanop, Amornchai
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (11) : 4748 - 4759
  • [8] Energy and exergy analysis of internal reforming solid oxide fuel cell-gas turbine hybrid system
    Bavarsad, Pegah Ghanbari
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (17) : 4591 - 4599
  • [9] Performance study and control strategies of temperature solid oxide fuel cell-gas turbine hybrid system
    Li, Yang
    Weng, Yiwu
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2010, 30 (35): : 94 - 100
  • [10] EXERGY ANALYSIS OF A SOLID OXIDE FUEL CELL-GAS TURBINE HYBRID POWER PLANT
    Amati, Valentina
    Sciubba, Enrico
    Toro, Claudia
    IMECE 2008: PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2008, VOL 8, 2009, : 721 - 731