Sonochemical assisted synthesis MnO2/RGO nanohybrid as effective electrode material for supercapacitor

被引:73
作者
Ghasemi, Shahram [1 ]
Hosseini, Sayed Reza [1 ]
Boore-talari, Omid [1 ]
机构
[1] Univ Mazandaran, Fac Chem, Babol Sar, Iran
关键词
Supercapacitor; Nanohybrid; Graphene; Manganese dioxide; Sonochemical synthesis; CHARGE STORAGE MECHANISM; CARBON NANOTUBE FILMS; ELECTROPHORETIC DEPOSITION; ELECTROCHEMICAL PROPERTIES; GRAPHENE; PERFORMANCE; COMPOSITE; REDUCTION; NANOCOMPOSITE; NANOPARTICLES;
D O I
10.1016/j.ultsonch.2017.08.013
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Manganese dioxide (MnO2) needle-like nanostructures are successfully synthesized by a sonochemical method from an aqueous solution of potassium bromate and manganese sulfate. Also, hybride of MnO2 nanoparticles wrapped with graphene oxide (GO) nanosheets are fabricated through an electrostatic coprecipitation procedure. With adjusting pH at 3.5, positive and negative charges are created on MnO2 and on GO, respectively which can electrostatically attract to each other and coprecipitate. Then, MnO2/GO pasted on stainless steel mesh is electrochemically reduced by applying -1.1 V to obtain MnO2/RGO nanohybrid. The structure and morphology of the MnO2 and MnO2/RGO nanohybrid are examined by Raman spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM), field emission-scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDX), and thermal gravimetric analysis (TGA). The capacitive behaviors of MnO2 and MnO2/RGO active materials on stainless steel meshes are investigated by cyclic voltammetry (CV), galvanostatic charge/discharge test and electrochemical impedance spectroscopy (EIS) by a three-electrode experimental setup in an aqueous solution of 0.5 M sodium sulfate in the potential window of 0.0-1.0 V. The electrochemical investigations reveal that MnO2/RGO exhibits high specific capacitance (C-s) of 375 F g(-1) at current density of 1 A g(-1) and good cycle stability (93% capacitance retention after 500 cycles at a scan rate of 200 mV s(-1)). The obtained results give good prospect about the application of electrostatic coprecipitation method to prepare graphene/metal oxides nanohybrids as effective electrode materials for supercapacitors.
引用
收藏
页码:675 / 685
页数:11
相关论文
共 53 条
  • [1] Synthesis of MnO2 nanoparticles from sonochemical reduction of MnO4- in water under different pH conditions
    Abulizi, Abulikemu
    Yang, Guo Hai
    Okitsu, Kenji
    Zhu, Jun-Jie
    [J]. ULTRASONICS SONOCHEMISTRY, 2014, 21 (05) : 1629 - 1634
  • [2] Manganosite-microwave exfoliated graphene oxide composites for asymmetric supercapacitor device applications
    Antiohos, Dennis
    Pingmuang, Kanlaya
    Romano, Mark S.
    Beirne, Stephen
    Romeo, Tony
    Aitchison, Phil
    Minett, Andrew
    Wallace, Gordon
    Phanichphant, Sukon
    Chen, Jun
    [J]. ELECTROCHIMICA ACTA, 2013, 101 : 99 - 108
  • [3] Balderas-Hernandez P., 2006, CHEM ED, V10, P267, DOI DOI 10.1333/S00897061012A
  • [4] Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors
    Brousse, Thierry
    Toupin, Mathieu
    Dugas, Romain
    Athouel, Laurence
    Crosnier, Olivier
    Belanger, Daniel
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (12) : A2171 - A2180
  • [5] Graphene and nanostructured MnO2 composite electrodes for supercapacitors
    Cheng, Qian
    Tang, Jie
    Ma, Jun
    Zhang, Han
    Shinya, Norio
    Qin, Lu-Chang
    [J]. CARBON, 2011, 49 (09) : 2917 - 2925
  • [6] The additive-free electrode based on the layered MnO2 nanoflowers/reduced, graphene oxide film for high performance supercapacitor
    Ding, Yanhua
    Zhang, Na
    Zhang, Jianyong
    Wang, Xiaorui
    Jin, Jianqun
    Zheng, Xinfeng
    Fang, Yongzheng
    [J]. CERAMICS INTERNATIONAL, 2017, 43 (07) : 5374 - 5381
  • [7] The chemistry of graphene oxide
    Dreyer, Daniel R.
    Park, Sungjin
    Bielawski, Christopher W.
    Ruoff, Rodney S.
    [J]. CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) : 228 - 240
  • [8] High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition
    Du, Chunsheng
    Pan, Ning
    [J]. NANOTECHNOLOGY, 2006, 17 (21) : 5314 - 5318
  • [9] Multilayer coatings with improved reliability produced by aqueous electrophoretic deposition
    Ferrari, B
    González, S
    Moreno, R
    Baudín, C
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2006, 26 (1-2) : 27 - 36
  • [10] Gao B, 2001, ADV MATER, V13, P1770, DOI 10.1002/1521-4095(200112)13:23<1770::AID-ADMA1770>3.3.CO