Nanoalloying of clusters of immiscible metals and the formation of bimetallic nanoparticles in the conditions of non-synchronous explosion of two wires

被引:16
作者
Pervikov, A., V [1 ]
Suliz, K., V [1 ,2 ]
Lerner, M., I [1 ,3 ]
机构
[1] Inst Strength Phys & Mat Sci SB RAS, 2-4 Akad Skii Pr, Tomsk 634055, Russia
[2] Natl Res Tomsk Polytech Univ, 30 Lenina Pr, Tomsk 634050, Russia
[3] Natl Res Tomsk State Univ, 36 Lenina Pr, Tomsk 634050, Russia
基金
俄罗斯科学基金会;
关键词
Bimetallic nanoparticles; Explosion of two wires; Metal mixing enthalpy; Nanoalloying of clusters; Immiscible metals; ELECTRICAL EXPLOSION; NI; PARTICLES; DISCHARGE; DYNAMICS; ENERGY; ALLOY; CORE;
D O I
10.1016/j.powtec.2019.11.003
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The work researches the influence of metal mixing enthalpy on spontaneous nanoalloying of coagulated clusters formed when intertwined Fe/Ag, Ni/Ag, Nb/Cu and Pb/Cu wires with equiatomic composition are exploded. The analysis of temporal dependencies of currents and voltages has shown that the intervals between the successive explosions of Fe/Ag, Ni/Ag, Nb/Cu and Pb/Cu wires are 0.38, 0.26, 0.43 and 0.4 mu s, respectively. This explains their asynchronous destruction. It has been found that when wires are exploded, bimetallic Janus and core-shell nanoparticles are formed. The obtained data makes it possible to conclude that when wires explode nonsynchronously, clusters coagulate and atoms of metals subsequently intermix. The results of the research demonstrate that the explosion of two wires made of metals with positive mixing enthalpy (from 8 to 116 kJ/g) is a process that can be used to obtain bimetallic nanoparticles with complex structures. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:855 / 862
页数:8
相关论文
共 58 条
[1]  
Alloyeau D., 2012, NANOALLOYS SYNTHESIS
[2]  
[Anonymous], [No title captured]
[3]   Numerical investigation on the growth process and size distribution of nanoparticles obtained through electrical explosion of aluminum wire [J].
Bai, Jun ;
Shi, Zongqian ;
Jia, Shenli .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (07)
[4]  
Baker Hugh, 1992, ASM HDB, V3
[5]   Stratification dynamics and the development of electrothermal instability at the wire explosion [J].
Baksht, R. B. ;
Tkachenko, S. I. ;
Romanova, V. M. ;
Mingaleev, A. R. ;
Oreshkin, V. I. ;
Ter-Oganes'yan, A. E. ;
Khattatov, T. A. ;
Shelkovenko, T. A. ;
Pikuz, S. A. .
TECHNICAL PHYSICS, 2013, 58 (08) :1129-1137
[6]  
Calvo F, 2013, NANOALLOYS: FROM FUNDAMENTALS TO EMERGENT APPLICATIONS, P1
[7]  
Campbell FC., 2008, ELEMENTS METALLURGY
[8]   Extreme creep resistance in a microstructurally stable nanocrystalline alloy [J].
Darling, K. A. ;
Rajagopalan, M. ;
Komarasamy, M. ;
Bhatia, M. A. ;
Hornbuckle, B. C. ;
Mishra, R. S. ;
Solanki, K. N. .
NATURE, 2016, 537 (7620) :378-+
[9]   Effects of interface area density and solid solution on the microhardness of Cu-Nb microcomposite wires [J].
Deng, Liping ;
Liu, Zhifeng ;
Wang, Bingshu ;
Han, Ke ;
Xiang, Hongliang .
MATERIALS CHARACTERIZATION, 2019, 150 :62-66
[10]  
Dinnebier RE, 2008, POWDER DIFFRACTION: THEORY AND PRACTICE, P1, DOI 10.1039/9781847558237