Generalized Weierstrass-Enneper inducing, conformal immersions, and gravity

被引:41
作者
Carroll, R
Konopelchenko, B
机构
[1] UNIV LECCE, DEPT PHYS, I-73100 LECCE, ITALY
[2] BUDKER INST NUCL PHYS, NOVOSIBIRSK 90, RUSSIA
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 1996年 / 11卷 / 07期
关键词
D O I
10.1142/S0217751X96000547
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Basic quantities related to 2D gravity, such as Polyakov extrinsic action, Nambu-Goto action, geometrical action and the Euler characteristic, are studied using generalized Weierstrass-Enneper (GWE) inducing of surfaces in R(3). Connection of the GWE inducing with conformal immersion is made and various aspects of the theory are shown to be invariant under the modified Veselov-Novikov hierarchy of flows. The geometry of h root g = 1 surfaces (h similar to mean curvature) is shown to be connected with the dynamics of infinite- and finite-dimensional integrable systems. Connections with Liouville-Beltrami gravity are indicated.
引用
收藏
页码:1183 / 1216
页数:34
相关论文
共 73 条
[1]   PATH INTEGRAL QUANTIZATION OF THE COADJOINT ORBITS OF THE VIRASORO GROUP AND 2-D GRAVITY [J].
ALEKSEEV, A ;
SHATASHVILI, S .
NUCLEAR PHYSICS B, 1989, 323 (03) :719-733
[2]  
ALVAREZGAUME L, 1992, STRING THEORY AND QUANTUM GRAVITY 91, P142
[3]   THE NOETHER THEOREM FOR GEOMETRIC ACTIONS AND AREA PRESERVING DIFFEOMORPHISMS ON THE TORUS [J].
ARATYN, H ;
NISSIMOV, E ;
PACHEVA, S ;
ZIMERMAN, AH .
PHYSICS LETTERS B, 1990, 242 (3-4) :377-382
[4]   SYMPLECTIC ACTIONS ON COADJOINT ORBITS [J].
ARATYN, H ;
NISSIMOV, E ;
PACHEVA, S ;
ZIMERMAN, AH .
PHYSICS LETTERS B, 1990, 240 (1-2) :127-132
[5]   ON THE GROUP THEORETICAL MEANING OF CONFORMAL FIELD-THEORIES IN THE FRAMEWORK OF COADJOINT ORBITS [J].
ARATYN, H ;
NISSIMOV, E ;
PACHEVA, S .
PHYSICS LETTERS B, 1990, 251 (03) :401-405
[6]  
Baez J., 1994, Gauge Fields, Knots, and Gravity the
[7]  
BAKAS I, 1988, NHUCL PHYS B, V320, P189
[8]  
BOGDANOV L. V., 1987, AKAD NAUK SSSR TEORE, V70, P309
[9]  
CARROLL R, IN PRESS UBIQUITOUSK
[10]  
CARROLL R, 1991, TOPICS SOLITON THEOR