Caputo-Hadamard fractional differential equation with three-point boundary conditions in Banach spaces

被引:58
作者
Boutiara, Abdellatif [1 ]
Guerbati, Kaddour [1 ]
Benbachir, Maamar [2 ]
机构
[1] Univ Ghardaia, Aboratory Math & Appl Sci, Bounoura 47000, Algeria
[2] Saad Dahlab Univ, Fac Sci & Technol, Blida, Algeria
来源
AIMS MATHEMATICS | 2020年 / 5卷 / 01期
关键词
fractional differential equation; fractional integral conditions; Caputo-Hadamard fractional derivative; Kuratowski measures of noncompactness; Monch fixed point theorems; Banach space; CHEBYSHEV CARDINAL WAVELETS; UNIQUENESS; EXISTENCE;
D O I
10.3934/math.2020017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a more general class of fractional-order boundary value problems involving the Caputo-Hadamard fractional derivative. Existence results for the given problem are established by applying the Monch's fixed point theorem and the technique of measures of noncompactness. an example is given to illustrate our results. The boundary conditions introduced in this work are of quite general nature and reduce to many special cases by fixing the parameters involved in the conditions.
引用
收藏
页码:259 / 272
页数:14
相关论文
共 47 条
[1]  
Agarwal R. P., 2001, CAMB TRACT MATH, V141
[2]   On the Application of Measure of Noncompactness to the Existence of Solutions for Fractional Differential Equations [J].
Agarwal, Ravi P. ;
Benchohra, Mouffak ;
Seba, Djamila .
RESULTS IN MATHEMATICS, 2009, 55 (3-4) :221-230
[3]   Some New Fixed Point Results via the Concept of Measure of Noncompactness [J].
Aghajani, Asadollah ;
Tehrani, Alireza Mosleh ;
O'Regan, Donald .
FILOMAT, 2015, 29 (06) :1209-1216
[4]  
AKHMEROV RR, 1992, MEASURES NONCOMPACTN
[5]  
Alvarez J. C., 1985, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales de Madrid, V79, P53
[6]  
[Anonymous], 1993, An Introduction to the Fractional Calculus and Fractional Differential Equations
[7]  
[Anonymous], 2017, BOUND VALUE PROBL
[8]  
Ardjouni A., 2019, OPEN J MATH ANAL, V3, P62, DOI [10.30538/psrp-oma2019.0033, DOI 10.30538/PSRP-OMA2019.0033]
[9]  
Arioua Y., 2017, SURV MATH APPL, V12, P103, DOI DOI 10.31197/ATNAA.419517
[10]  
Assari P., 2019, ZAMM-Z ANGEW MATH ME, V99, P1