Hierarchical Multiscale Framework for Materials Modeling: Equation of State Implementation and Application to a Taylor Anvil Impact Test of RDX

被引:6
作者
Barnes, Brian C. [1 ]
Spear, Carrie E. [2 ]
Leiter, Ken W. [3 ]
Becker, Richard [4 ]
Knap, Jaroslaw [3 ]
Lisal, Martin [5 ,6 ]
Brennan, John K. [1 ]
机构
[1] US Army Res Lab, RDRL WML B, Energet Mat Sci Branch, Aberdeen Proving Ground, MD 21005 USA
[2] Johns Hopkins Univ, Maryland Adv Res Comp Ctr, Baltimore, MD USA
[3] US Army Res Lab, RDRL CIH C, Simulat Sci Branch, Aberdeen Proving Ground, MD 21005 USA
[4] US Army Res Lab, RDRL WMP C, Impact Phys Branch, Aberdeen Proving Ground, MD 21005 USA
[5] ASCR, Inst Chem Proc Fundamentals, Lab Chem & Phys Aerosols, Prague 16502, Czech Republic
[6] Univ JE Purkyne, Dept Phys, Fac Sci, Usti Nad Labem 40096, Czech Republic
来源
SHOCK COMPRESSION OF CONDENSED MATTER - 2015 | 2017年 / 1793卷
关键词
D O I
10.1063/1.4971607
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In order to progress towards a materials-by-design capability, we present work on a challenge in continuum-scale modeling: the direct incorporation of complex physical processes in the constitutive evaluation. In this work, we use an adaptive scale-bridging computational framework executing in parallel in a heterogeneous computational environment to couple a fine-scale, particle-based model computing the equation of state (EOS) to the constitutive response in a finite-element multi-physics simulation. The EOS is obtained from high fidelity materials simulations performed via dissipative particle dynamics (DPD) methods. This scale-bridging framework is progress towards an innovation infrastructure that will be of great utility for systems in which essential aspects of material response are too complex to capture by closed form material models. The design, implementation, and performance of the scale-bridging framework are discussed. Also presented is a proof-of-concept Taylor anvil impact test of non-reacting 1,3,5-trinitrohexahydro-s-triazine (RDX).
引用
收藏
页数:6
相关论文
共 9 条
[1]  
E W, 2007, COMMUN COMPUT PHYS, V2, P367
[2]   Particle-based multiscale coarse graining with density-dependent potentials: Application to molecular crystals (hexahydro-1,3,5-trinitro-s-triazine) [J].
Izvekov, Sergei ;
Chung, Peter W. ;
Rice, Betsy M. .
JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (04)
[3]  
Knap J., INT J NUMER IN PRESS
[4]   Dissipative particle dynamics at isothermal, isobaric, isoenergetic, and isoenthalpic conditions using Shardlow-like splitting algorithms [J].
Lisal, Martin ;
Brennan, John K. ;
Avalos, Josep Bonet .
JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (20)
[5]   Hybrid molecular-continuum simulations using smoothed dissipative particle dynamics [J].
Petsev, Nikolai D. ;
Leal, L. Gary ;
Shell, M. Scott .
JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (04)
[6]   Bridging the length scales through nonlocal hierarchical multiscale modeling scheme [J].
Rahman, R. ;
Foster, J. T. .
COMPUTATIONAL MATERIALS SCIENCE, 2014, 92 :401-415
[7]   Distributed Database Kriging for Adaptive Sampling (D2KAS) [J].
Roehm, Dominic ;
Pavel, Robert S. ;
Barros, Kipton ;
Rouet-Leduc, Bertrand ;
McPherson, Allen L. ;
Germann, Timothy C. ;
Junghans, Christoph .
COMPUTER PHYSICS COMMUNICATIONS, 2015, 192 :138-147
[8]   The curious events leading to the theory of shock waves [J].
Salas, Manuel D. .
SHOCK WAVES, 2007, 16 (06) :477-487
[9]   Coupling the finite element method and molecular dynamics in the framework of the heterogeneous multiscale method for quasi-static isothermal problems [J].
Ulz, Manfred H. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2015, 74 :1-18