Explicit high-order structure-preserving algorithms for the two-dimensional fractional nonlinear Schrodinger equation

被引:0
作者
Fu, Yayun [1 ]
Shi, Yanhua [1 ]
Zhao, Yanmin [1 ]
机构
[1] Xuchang Univ, Sch Sci, Xuchang 461000, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional nonlinear Schrodinger equation; structure-preserving algorithms; invariant energy quadratization; Runge-Kutta method; explicit conservative schemes; CONSERVATIVE DIFFERENCE SCHEME; FOURIER PSEUDOSPECTRAL METHOD; SINE-GORDON EQUATION; LINEARLY IMPLICIT; WAVE-EQUATIONS;
D O I
10.1080/00207160.2021.1940978
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper aims to construct a class of high-order explicit conservative schemes for the space fractional nonlinear Schrodinger equation by combing the invariant energy quadratization method and Runge-Kutta method. We first derive the Hamiltonian formulation of the equation, and obtain a new equivalent system via introducing a scalar variable. Then, we propose a semi-discrete conservative system by using the Fourier pseudo-spectral method to approximate the equivalent system in space. Further applying the fourth-order modified Runge-Kutta method to the semi-discrete system gives two classes of schemes for the equation. One scheme preserves the energy while the other scheme conserves the mass. Numerical experiments are provided to demonstrate the conservative properties, convergence orders and long time stability of the proposed schemes.
引用
收藏
页码:877 / 894
页数:18
相关论文
共 41 条
[1]   Computational methods for the dynamics of the nonlinear Schrodinger/Gross-Pitaevskii equations [J].
Antoine, Xavier ;
Bao, Weizhu ;
Besse, Christophe .
COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (12) :2621-2633
[2]  
Caffarelli L., 2009, COMMUN PART DIFF EQ, V26, P159
[3]   Efficient schemes for the damped nonlinear Schrodinger equation in high dimensions [J].
Cai, Jiaxiang ;
Zhang, Haihui .
APPLIED MATHEMATICS LETTERS, 2020, 102
[4]   Two classes of linearly implicit local energy-preserving approach for general multi-symplectic Hamiltonian PDEs [J].
Cai, Jiaxiang ;
Shen, Jie .
JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 401
[5]   Structure-preserving algorithms for the two-dimensional sine-Gordon equation with Neumann boundary conditions [J].
Cai, Wenjun ;
Jiang, Chaolong ;
Wang, Yushun ;
Song, Yongzhong .
JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 395 :166-185
[6]   Partitioned averaged vector field methods [J].
Cai, Wenjun ;
Li, Haochen ;
Wang, Yushun .
JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 370 :25-42
[7]   On the preservation of invariants by explicit Runge-Kutta methods [J].
Calvo, M. ;
Hernandez-Abreu, D. ;
Montijano, J. I. ;
Randez, L. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (03) :868-885
[8]   Explicit methods based on a class of four stage fourth order Runge-Kutta methods for preserving quadratic laws [J].
Del Buono, N ;
Mastroserio, C .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 140 (1-2) :231-243
[9]   Mass-conservative Fourier spectral methods for solving the fractional nonlinear Schrodinger equation [J].
Duo, Siwei ;
Zhang, Yanzhi .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (11) :2257-2271
[10]   An explicit structure-preserving algorithm for the nonlinear fractional Hamiltonian wave equation [J].
Fu, Yayun ;
Cai, Wenjun ;
Wang, Yushun .
APPLIED MATHEMATICS LETTERS, 2020, 102