Computation of periodic solution bifurcations in odes using bordered systems

被引:34
作者
Doedel, EJ
Govaerts, W
Kuznetsov, YA
机构
[1] CALTECH, Pasadena, CA 91125 USA
[2] State Univ Ghent, Dept Appl Math & Comp Sci, B-9000 Ghent, Belgium
[3] Univ Utrecht, Inst Math, NL-3508 TA Utrecht, Netherlands
[4] Russian Acad Sci, Inst Math Problems Biol, Pushchino 142290, Moscow region, Russia
关键词
bifurcations; periodic solutions; continuation; boundary value problems;
D O I
10.1137/S0036142902400779
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider numerical methods for the computation and continuation of the three generic secondary periodic solution bifurcations in autonomous ODEs, namely the fold, the period-doubling (or flip) bifurcation, and the torus (or Neimark-Sacker) bifurcation. In the fold and flip cases we append one scalar equation to the standard periodic BVP that defines the periodic solution; in the torus case four scalar equations are appended. Evaluation of these scalar equations and their derivatives requires the solution of linear BVPs, whose sparsity structure ( after discretization) is identical to that of the linearization of the periodic BVP. Therefore the calculations can be done using existing numerical linear algebra techniques, such as those implemented in the software auto and COLSYS.
引用
收藏
页码:401 / 435
页数:35
相关论文
共 22 条
[1]  
ALLGOWER EL, 1996, HDB NUMER ANAL, V5
[2]  
[Anonymous], 1997, AUTO 97: Continuation and Bifurcation Software for Ordinary Differential Equations, user's Manual
[3]  
[Anonymous], INT J BIFURCATION CH
[4]  
[Anonymous], 1991, INT J BIFURCAT CHAOS
[5]  
ASCHER U, 1979, MATH COMPUT, V33, P659, DOI 10.1090/S0025-5718-1979-0521281-7
[6]  
Beyn W.-J., 2002, HDB DYNAMICAL SYSTEM, V2, P149, DOI [DOI 10.1016/S1874-575X, DOI 10.1016/S1874-575X(02)80025-X]
[7]   COLLOCATION AT GAUSSIAN POINTS [J].
DEBOOR, C ;
SWARTZ, B .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (04) :582-606
[8]   MULTIPLE LIMIT-POINT BIFURCATION [J].
DECKER, DW ;
KELLER, HB .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1980, 75 (02) :417-430
[9]  
DOEDEL EJ, 1984, COMPUT METHOD APPL M, V6, P127
[10]  
FAIRGRIEVE TF, 1994, THESIS U TORONTO TOR