Families of Particles with Different Masses in PT-Symmetric Quantum Field Theory

被引:26
作者
Bender, Carl M. [1 ]
Klevansky, S. P. [2 ]
机构
[1] Washington Univ, Dept Phys, St Louis, MO 63130 USA
[2] Heidelberg Univ, Inst Theoret Phys, D-69120 Heidelberg, Germany
关键词
NON-HERMITIAN HAMILTONIANS; BROKEN SYMMETRY; MECHANICS; EQUATIONS;
D O I
10.1103/PhysRevLett.105.031601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An elementary field-theoretic mechanism is proposed that allows one Lagrangian to describe a family of particles having different masses but otherwise similar physical properties. The mechanism relies on the observation that the Dyson-Schwinger equations derived from a Lagrangian can have many different but equally valid solutions. Nonunique solutions to the Dyson-Schwinger equations arise when the functional integral for the Green's functions of the quantum field theory converges in different pairs of Stokes' wedges in complex-field space, and the solutions are physically viable if the pairs of Stokes' wedges are PT symmetric.
引用
收藏
页数:4
相关论文
共 27 条
[1]  
[Anonymous], 1993, QUASIEXACTLY SOLVABL
[2]   Making sense of non-Hermitian Hamiltonians [J].
Bender, Carl M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) :947-1018
[3]   New quasi-exactly solvable sextic polynomial potentials [J].
Bender, CM ;
Monou, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (10) :2179-2187
[4]   Complex extension of quantum mechanics [J].
Bender, CM ;
Brody, DC ;
Jones, HF .
PHYSICAL REVIEW LETTERS, 2002, 89 (27)
[5]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[6]   PT-symmetric quantum mechanics [J].
Bender, CM ;
Boettcher, S ;
Meisinger, PN .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) :2201-2229
[7]   Two-point Green's function in PT-symmetric theories [J].
Bender, CM ;
Boettcher, S ;
Meisinger, PN ;
Wang, QH .
PHYSICS LETTERS A, 2002, 302 (5-6) :286-290
[8]   Double-scaling limit of a broken symmetry quantum field theory in dimensions D<2 [J].
Bender, CM ;
Boettcher, S ;
Jones, HF ;
Meisinger, PN .
JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (05) :1960-1973
[9]  
Bender CM, 2000, PHYS REV D, V62, DOI 10.1103/PhysRevD.62.085001
[10]   Supersymmetry and the spontaneous breakdown of PT symmetry [J].
Dorey, P ;
Dunning, C ;
Tateo, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (28) :L391-L400