Symmetric and Rees algebras of Koszul cycles and their Grobner bases

被引:11
|
作者
Herzog, J
Tang, ZM
Zarzuela, S
机构
[1] Univ Essen Gesamthsch, Fachbereich Math & Informat 6, D-45117 Essen, Germany
[2] Suzhou Univ, Dept Math, Suzhou 2150006, Peoples R China
[3] Univ Barcelona, Dept Algebra & Geometria, E-08007 Barcelona, Spain
关键词
D O I
10.1007/s00229-003-0420-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the symmetric algebra S(E-i) and Rees algebra R(E-i) of the modules E-i of i-cycles of the Koszul complex associated with the sequence of indeterminates x(1),...,x(n) of a polynomial ring K[x(1),...,x(n)]. For i = 2 and i = n-2 we show that x(1),...,x(n) is a d-sequence on S(E-i) and R(E-i) and we determine Grobner bases and Sagbi bases related to these algebras.
引用
收藏
页码:489 / 509
页数:21
相关论文
共 50 条