Improvement of Fuzzy Controller with Maximum Power Point Tracking Technology

被引:0
作者
Wei, Liu [1 ]
Jing, Shi [1 ]
机构
[1] Northeast Petr Univ, Sch Elect Informat Engn, Daqing, Heilongjiang, Peoples R China
来源
PROCEEDINGS OF 2013 2ND INTERNATIONAL CONFERENCE ON MEASUREMENT, INFORMATION AND CONTROL (ICMIC 2013), VOLS 1 & 2 | 2013年
关键词
Distributed generation; Particle swarm algorith; Fuzzy logic controll; MPPT;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents implementation of particle swarm optimization (PSO) algorithm as S function. The calculation method is used to improve the function of the fuzzy logic controller (FLC), to make it work at the maximum power point. The proposed method was verified using simulation in MATLAB/Simulink. The results show that the optimized FLC gives a better performance compared to traditional method on maximum power point tracking (MPPT). The method is applied to photovoltaic grid, So that the grid system to stabilize.
引用
收藏
页码:1246 / 1250
页数:5
相关论文
共 5 条
[1]   An intelligent maximum power point tracker using peak current control [J].
D'Souza, NS ;
Lopes, LAC ;
Liu, XJ .
2005 IEEE 36TH POWER ELECTRONIC SPECIALISTS CONFERENCE (PESC), VOLS 1-3, 2005, :172-177
[2]  
Hong Naigang, 2006, POWER ELECT ELECT DR
[3]   Integration of particle swarm optimization-based fuzzy neural network and artificial neural network for supplier selection [J].
Kuo, R. J. ;
Hong, S. Y. ;
Huang, Y. C. .
APPLIED MATHEMATICAL MODELLING, 2010, 34 (12) :3976-3990
[4]   Maximum power point tracking scheme for PV systems operating under partially shaded conditions [J].
Patel, Hiren ;
Agarwal, Vivek .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2008, 55 (04) :1689-1698
[5]   A review on global solar energy policy [J].
Solangi, K. H. ;
Islam, M. R. ;
Saidur, R. ;
Rahim, N. A. ;
Fayaz, H. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (04) :2149-2163