Linnik's approximation to Goldbach's conjecture, and other problems

被引:22
作者
Platt, D. J. [1 ]
Trudgian, T. S. [1 ]
机构
[1] Univ Bristol, Heilbronn Inst Math Res, Bristol, Avon, England
基金
澳大利亚研究理事会;
关键词
Goldbach-Waring problem; Additive number theory; Sums of primes; 4 PRIME SQUARES; ODD INTEGERS; POWERS; REPRESENTATION; PAIRS; CUBES; SUMS; EQUATIONS; DENSITY; SIEVE;
D O I
10.1016/j.jnt.2015.01.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We examine the problem of writing every sufficiently large even number as the sum of two primes and at most K powers of 2. We outline an approach that only just falls short of improving the current bounds on K. Finally, we improve the estimates in other Waring-Goldbach problems. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:54 / 62
页数:9
相关论文
共 31 条
[1]  
[Anonymous], 2002, Asian J. Math, DOI DOI 10.4310/AJM.2002.V6.N3.A7
[2]  
Batut C., 2000, User's Guide to PARI-GP
[3]  
CHEN JR, 1978, SCI SINICA, V21, P701
[4]  
Granlund T., 2013, GNU MULTIPLE PRECISI
[5]   On pairs of four prime squares and powers of two [J].
Hu, Liqun ;
Liu, Huafeng .
JOURNAL OF NUMBER THEORY, 2015, 147 :594-604
[6]   The number of powers of 2 in a representation of large odd integers [J].
Hu, Liqun ;
Yang, Li .
ACTA ARITHMETICA, 2011, 150 (02) :175-192
[7]  
Johansson, 2014, ACM COMMUN COMPUT AL, V47, P166, DOI [10.1145/2576802.2576828, DOI 10.1145/2576802.2576828]
[8]   ON PAIRS OF LINEAR EQUATIONS IN FOUR PRIME VARIABLES AND POWERS OF TWO [J].
Kong, Yafang .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 87 (01) :55-67
[9]   Representation of odd integers as the sum of one prime, two squares of primes and powers of 2 [J].
Li, Hongze .
ACTA ARITHMETICA, 2007, 128 (03) :223-233
[10]   Four prime squares and powers of 2 [J].
Li, Hongze .
ACTA ARITHMETICA, 2006, 125 (04) :383-391