Quantum Cohomology of Minuscule Homogeneous Spaces III Semi-Simplicity and Consequences

被引:23
作者
Chaput, P. E. [1 ]
Manivel, L. [2 ]
Perrin, N. [3 ]
机构
[1] UFR Sci & Tech, Lab Math Jean Leray, Nantes, France
[2] Univ Grenoble 1, Inst Fourier, F-38402 St Martin Dheres, France
[3] Univ Paris 06, Inst Math, Paris, France
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2010年 / 62卷 / 06期
关键词
quantum cohomology minuscule homogeneous spaces Schubert calculus; quantum Euler class; ORTHOGONAL GRASSMANNIANS; TOTAL POSITIVITY; RINGS;
D O I
10.4153/CJM-2010-050-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the quantum cohomology ring of any minuscule or commuscule homoge neous space, specialized at q = 1, is semisimple This implies that complex conjugation defines an algebra automorphism of the quantum cohomology ring localized at the quantum parameter We check that this involution coincides with the strange duality defined in our previous article We de duce Vafa-Intriligator type formulas for the Gromov-Witten invariants
引用
收藏
页码:1246 / 1263
页数:18
相关论文
共 14 条
[1]   The quantum Euler class and the quantum cohomology of the Grassmannians [J].
Abrams, L .
ISRAEL JOURNAL OF MATHEMATICS, 2000, 117 (1) :335-352
[2]   Quantum Schubert calculus [J].
Bertram, A .
ADVANCES IN MATHEMATICS, 1997, 128 (02) :289-305
[3]  
Bourbaki N., 1968, ACTUALITES SCI IND
[4]   Gromov-Witten invariants on Grassmannians [J].
Buch, AS ;
Kresch, A ;
Tamvakis, H .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (04) :901-915
[5]   Quantum cohomology of minuscule homogeneous spaces [J].
Chaput, P. E. ;
Manivel, L. ;
Perrin, N. .
TRANSFORMATION GROUPS, 2008, 13 (01) :47-89
[6]   Quantum Cohomology of Minuscule Homogeneous Spaces II Hidden Symmetries [J].
Chaput, Pierre-Emmanuel ;
Manivel, Laurent ;
Perrin, Nicolas .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
[7]   QUANTUM COHOMOLOGY RINGS OF LAGRANGIAN AND ORTHOGONAL GRASSMANNIANS AND TOTAL POSITIVITY [J].
Cheong, Daewoong .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (10) :5505-5537
[8]  
HENGELBROCK H, AG0205260
[9]   Quantum cohomology of orthogonal Grassmannians [J].
Kresch, A ;
Tamvakis, H .
COMPOSITIO MATHEMATICA, 2004, 140 (02) :482-500
[10]  
MEHTA LM, 1988, COMMUN ALGEBRA, V16, P1083, DOI DOI 10.1080/00927878808823619