Interfacial DNA Framework-Enhanced Background-to-Signal Transition for Ultrasensitive and Specific Micro-RNA Detection

被引:33
作者
Guo, Tongtong [1 ]
Xiang, Yuanhang [1 ,2 ]
Lu, Hao [1 ,2 ]
Huang, Minmin [1 ,2 ]
Liu, Fengfei [3 ]
Fang, Min [3 ]
Liu, Jia [4 ]
Tang, Yujin [4 ]
Li, Xinchun [1 ]
Yang, Fan [1 ,2 ]
机构
[1] Guangxi Med Univ, Sch Pharm, Guangxi Key Lab Bioact Mol Res & Evaluat, Nanning 530021, Peoples R China
[2] Guangxi Med Univ, Ctr Translat Med,Natl Ctr Int Res Biotargeting Th, Guangxi Beibu Gulf Marine Biomed Precis Dev & Hig, Guangxi Hlth Commiss Key Lab Basic Res Antigeriat, Nanning 530021, Peoples R China
[3] Guangxi Med Univ, Affiliated Tumor Hosp, Dept Clin Lab, Nanning 530021, Peoples R China
[4] Youjiang Med Univ Nationalities, Affiliated Hosp, Dept Orthoped, Guangxi Key Lab Basic & Translat Res Bone & Joint, Baise 533000, Peoples R China
基金
中国国家自然科学基金;
关键词
DNA framework; electrochemistry; circulating microRNAs; polyaniline; diagnostics; BIOSENSORS; NANOSTRUCTURES; AMPLIFICATION; OPPORTUNITIES; POLYANILINE; CHALLENGES; DEPOSITION;
D O I
10.1021/acsami.2c03075
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Interfacial DNA self-assembly is fundamental to solid nucleic acid biosensors, whereas how to improve the signal-to-noise ratio has always been a challenge, especially in the charge-based electrochemical DNA sensors because of the large noise from the negatively charged DNA capture probes. Here, we report a DNA framework-reversed signal-gain strategy through background-to-signal transition for ultrasensitive and highly specific electrical detection of microRNAs (miRNAs) in blood. By using a model of enzymecatalyzed deposition of conductive molecules (polyaniline) targeting to DNA, we observed the highest signal contribution per unit area by the highly charged three-dimensional (3D) tetrahedral DNA framework probe, relative to the modest of two-dimensional (2D) polyA probe and the lowest of onedimensional (1D) single-stranded (ss)DNA probe, suggesting the positive correlation of background DNA charge with signal enhancement. Using such an effective signal-transition design, the DNA framework-based electrochemical sensor achieves ultrasensitive miRNAs detection with sensitivity up to 0.29 fM (at least 10-fold higher than that with 1D ssDNA or 2D polyA probes) and high specificity with single-base resolution. More importantly, this high-performance sensor allows for a generalized sandwich detection of tumor-associated miRNAs in the complex matrices (multiple cell lysates and blood serum) and further distinguishes the tumor patients (e.g., breast, lung, and liver cancer) from the normal individuals. These advantages signify the promise of this miRNA sensor as a versatile tool in precision diagnosis.
引用
收藏
页码:18209 / 18218
页数:10
相关论文
共 46 条
[1]   The Promising Role of miR-21 as a Cancer Biomarker and Its Importance in RNA-Based Therapeutics [J].
Bautista-Sanchez, Diana ;
Arriaga-Canon, Cristian ;
Pedroza-Torres, Abraham ;
De La Rosa-Velazquez, Inti Alberto ;
Gonzalez-Barrios, Rodrigo ;
Contreras-Espinosa, Laura ;
Montiel-Manriquez, Rogelio ;
Castro-Hernandez, Clementina ;
Fragoso-Ontiveros, Veronica ;
Maria Alvarez-Gomez, Rosa ;
Herrera, Luis A. .
MOLECULAR THERAPY-NUCLEIC ACIDS, 2020, 20 :409-420
[2]   DNA nanotechnology-enabled biosensors [J].
Chao, Jie ;
Zhu, Dan ;
Zhang, Yinan ;
Wang, Lianhui ;
Fan, Chunhai .
BIOSENSORS & BIOELECTRONICS, 2016, 76 :68-79
[3]   An ultrasensitive biosensor for dual-specific DNA based on deposition of polyaniline on a self-assembled multi-functional DNA hexahedral-nanostructure [J].
Chen, Haohan ;
Xiang, Youhe ;
Cai, Rongfeng ;
Zhang, Liang ;
Zhang, Yuting ;
Zhou, Nandi .
BIOSENSORS & BIOELECTRONICS, 2021, 179
[4]   MicroRNA amplification and detection technologies: opportunities and challenges for point of care diagnostics [J].
Dave, Vivek Priy ;
Tien Anh Ngo ;
Pernestig, Anna-Karin ;
Tilevik, Diana ;
Kant, Krishna ;
Trieu Nguyen ;
Wolff, Anders ;
Dang Duong Bang .
LABORATORY INVESTIGATION, 2019, 99 (04) :452-469
[5]   DNA Nanostructure-Programmed Like-Charge Attraction at the Cell-Membrane Interface [J].
Ding, Hongming ;
Li, Jiang ;
Chen, Nan ;
Hu, Xingjie ;
Yang, Xiafeng ;
Guo, Linjie ;
Li, Qian ;
Zuo, Xiaolei ;
Wang, Lihua ;
Ma, Yuqiang ;
Fan, Chunhai .
ACS CENTRAL SCIENCE, 2018, 4 (10) :1344-1351
[6]   MicroRNA: Function, Detection, and Bioanalysis [J].
Dong, Haifeng ;
Lei, Jianping ;
Ding, Lin ;
Wen, Yongqiang ;
Ju, Huangxian ;
Zhang, Xueji .
CHEMICAL REVIEWS, 2013, 113 (08) :6207-6233
[7]   Detection of nucleic acids using enzyme-catalyzed template-guided deposition of polyaniline [J].
Gao, Zhiqiang ;
Rafea, Siti ;
Lim, Lay Har .
ADVANCED MATERIALS, 2007, 19 (04) :602-+
[8]   Concept and Development of Framework Nucleic Acids [J].
Ge, Zhilei ;
Gu, Hongzhou ;
Li, Qian ;
Fan, Chunhai .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (51) :17808-17819
[9]   Circulating microRNAs in breast cancer: novel diagnostic and prognostic biomarkers [J].
Hamam, Rimi ;
Hamam, Dana ;
Alsaleh, Khalid A. ;
Kassem, Moustapha ;
Zaher, Waleed ;
Alfayez, Musaad ;
Aldahmash, Abdullah ;
Alajez, Nehad M. .
CELL DEATH & DISEASE, 2017, 8 :e3045-e3045
[10]   Programmable materials and the nature of the DNA bond [J].
Jones, Matthew R. ;
Seeman, Nadrian C. ;
Mirkin, Chad A. .
SCIENCE, 2015, 347 (6224)