Comparison of dynamic and quasi-static measurements of thin film adhesion

被引:18
作者
Tran, Phuong [1 ]
Kandula, Soma S. [2 ]
Geubelle, Philippe H. [2 ]
Sottos, Nancy R. [3 ]
机构
[1] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL USA
[2] Univ Illinois, Dept Aerosp Engn, Urbana, IL USA
[3] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL USA
基金
美国国家科学基金会;
关键词
LASER SPALLATION TECHNIQUE; INTERFACE STRENGTH; FRACTURE; TOUGHNESS; FAILURE;
D O I
10.1088/0022-3727/44/3/034006
中图分类号
O59 [应用物理学];
学科分类号
摘要
Adhesive failure and the attendant delamination of a thin film on a substrate is controlled by the fracture energy required to propagate a crack along the interface. Numerous testing protocols have been introduced to characterize this critical property, but are limited by difficulties associated with applying precise loads, introducing well-defined pre-cracks, tedious sample preparation and complex analysis of plastic deformation in the films. The quasi-static four-point bend test is widely accepted in the microelectronics industry as the standard for measuring adhesion properties for a range of multilayer thin film systems. Dynamic delamination methods, which use laser-induced stress waves to rapidly load the thin film interface, have recently been offered as an alternative method for extracting interfacial fracture energy. In this work, the interfacial fracture energy of an aluminium (Al) thin film on a silicon (Si) substrate is determined for a range of dynamic loading conditions and compared with values measured under quasi-static conditions in a four-point bend test. Controlled dynamic delamination of the Al/Si interface is achieved by efficient conversion of the kinetic energy associated with a laser-induced stress wave into fracture energy. By varying the laser fluence, the fracture energy is investigated over a range of stress pulse amplitudes and velocities. For lower amplitudes of the stress wave, the fracture energy is nearly constant and compares favourably with the critical fracture energy obtained using the four-point bend technique, about 2.5 Jm(-2). As the pulse amplitude increases, however, a rate dependence of the dynamic fracture energy is observed. The fracture energy increases almost linearly with pulse amplitude until reaching a plateau value of about 6.0 Jm (2).
引用
收藏
页数:8
相关论文
共 31 条
[1]  
[Anonymous], J APPL PHYS
[2]  
[Anonymous], THESIS U ILLINOIS
[3]  
[Anonymous], ANN REV MAT RES
[4]   A test specimen for determining the fracture resistarim of bimaterial interfaces [J].
Charalambides, PG ;
Lund, J ;
Evans, AG ;
McMeeking, RM .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1989, 56 (01) :77-82
[5]   Rate-dependent fracture at adhesive interface [J].
Chaudhury, MK .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (31) :6562-6566
[6]   Adhesion and debonding of multi-layer thin film structures [J].
Dauskardt, R ;
Lane, M ;
Ma, Q ;
Krishna, N .
ENGINEERING FRACTURE MECHANICS, 1998, 61 (01) :141-162
[7]   EFFECTS OF NON-PLANARITY ON THE MIXED-MODE FRACTURE-RESISTANCE OF BIMATERIAL INTERFACES [J].
EVANS, AG ;
HUTCHINSON, JW .
ACTA METALLURGICA, 1989, 37 (03) :909-916
[8]  
Freund L., 2003, THIN FILM MAT STRESS, DOI 10.1017/CBO9780511754715
[9]   MEASUREMENT OF INTERFACE STRENGTH BY A LASER SPALLATION TECHNIQUE [J].
GUPTA, V ;
ARGON, AS ;
PARKS, DM ;
CORNIE, JA .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1992, 40 (01) :141-180
[10]   MEASUREMENT OF INTERFACE STRENGTH BY THE MODIFIED LASER SPALLATION TECHNIQUE .2. APPLICATIONS TO METAL-CERAMIC INTERFACES [J].
GUPTA, V ;
YUAN, J .
JOURNAL OF APPLIED PHYSICS, 1993, 74 (04) :2397-2404