Multispecies genetic objectives in spatial conservation planning

被引:41
作者
Nielsen, Erica S. [1 ]
Beger, Maria [2 ]
Henriques, Romina [1 ]
Selkoe, Kimberly A. [3 ]
von der Heyden, Sophie [1 ]
机构
[1] Univ Stellenbosch, Dept Bot & Zool, Evolutionary Genom Grp, Private Bag X1, ZA-7602 Stellenbosch, South Africa
[2] Univ Leeds, Sch Biol, Leeds LS2 9JT, W Yorkshire, England
[3] Univ Calif Santa Barbara, Natl Ctr Ecol Anal & Synth, 735 State St, Santa Barbara, CA 93101 USA
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
conservation genetics; genetic diversity; genetic isolation; intertidal ecology; Marxan; spatial prioritization; MARINE PROTECTED AREAS; EVOLUTIONARY PROCESSES; INDO-PACIFIC; POPULATION-GENETICS; COMMUNITY GENETICS; MITOCHONDRIAL-DNA; CLIMATE-CHANGE; RESILIENCE; ECOSYSTEMS; DIVERSITY;
D O I
10.1111/cobi.12875
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Growing threats to biodiversity and global alteration of habitats and species distributions make it increasingly necessary to consider evolutionary patterns in conservation decision making. Yet, there is no clear-cut guidance on how genetic features can be incorporated into conservation-planning processes, despite multiple molecular markers and several genetic metrics for each marker type to choose from. Genetic patterns differ between species, but the potential tradeoffs among genetic objectives for multiple species in conservation planning are currently understudied. We compared spatial conservation prioritizations derived from 2 metrics of genetic diversity (nucleotide and haplotype diversity) and 2 metrics of genetic isolation (private haplotypes and local genetic differentiation) in mitochondrial DNA of 5 marine species. We compared outcomes of conservation plans based only on habitat representation with plans based on genetic data and habitat representation. Fewer priority areas were selected for conservation plans based solely on habitat representation than on plans that included habitat and genetic data. All 4 genetic metrics selected approximately similar conservation-priority areas, which is likely a result of prioritizing genetic patterns across a genetically diverse array of species. Largely, our results suggest that multispecies genetic conservation objectives are vital to creating protected-area networks that appropriately preserve community-level evolutionary patterns.
引用
收藏
页码:872 / 882
页数:11
相关论文
共 50 条
[21]   Spatial conservation planning framework for assessing conservation opportunities in the Atlantic Forest of Brazil [J].
Giorgi, Ana Paula ;
Rovzar, Corey ;
Davis, Kelsey S. ;
Fuller, Trevon ;
Buermann, Wolfgang ;
Saatchi, Sassan ;
Smith, Thomas B. ;
Silveira, Luis Fabio ;
Gillespie, Thomas W. .
APPLIED GEOGRAPHY, 2014, 53 :369-376
[22]   Conservation Objectives and Sea-Surface Temperature Anomalies in the Great Barrier Reef [J].
Ban, Natalie C. ;
Pressey, Robert L. ;
Weeks, Scarla .
CONSERVATION BIOLOGY, 2012, 26 (05) :799-809
[23]   Objectives, criteria and methods for using molecular genetic data in priority setting for conservation of animal genetic resources [J].
Boettcher, P. J. ;
Tixier-Boichard, M. ;
Toro, M. A. ;
Simianer, H. ;
Eding, H. ;
Gandini, G. ;
Joost, S. ;
Garcia, D. ;
Colli, L. ;
Ajmone-Marsan, P. .
ANIMAL GENETICS, 2010, 41 :64-77
[24]   Conservation planning for adaptive and neutral evolutionary processes [J].
Hanson, Jeffrey O. ;
Marques, Adam ;
Verissimo, Ana ;
Camacho-Sanchez, Miguel ;
Velo-Anton, Guillermo ;
Martinez-Solano, Inigo ;
Carvalho, Silvia B. .
JOURNAL OF APPLIED ECOLOGY, 2020, 57 (11) :2159-2169
[25]   Predictive spatial niche and biodiversity hotspot models for small mammal communities in Alaska: applying machine-learning to conservation planning [J].
Baltensperger, Andrew P. ;
Huettmann, Falk .
LANDSCAPE ECOLOGY, 2015, 30 (04) :681-697
[26]   Collaborative conservation planning: Quantifying the contribution of expert engagement to identify spatial conservation priorities [J].
Selwood, Katherine E. ;
Wintle, Brendan A. ;
Kujala, Heini .
CONSERVATION LETTERS, 2019, 12 (06)
[27]   Evolving spatial conservation prioritization with intraspecific genetic data [J].
Andrello, Marco ;
D'Aloia, Cassidy ;
Dalongeville, Alicia ;
Escalante, Marco A. ;
Guerrero, Jimena ;
Perrier, Charles ;
Torres-Florez, Juan Pablo ;
Xuereb, Amanda ;
Manel, Stephanie .
TRENDS IN ECOLOGY & EVOLUTION, 2022, 37 (06) :553-564
[28]   Spatial socioeconomic data as a cost in systematic marine conservation planning [J].
Ban, Natalie Corinna ;
Klein, Carissa Joy .
CONSERVATION LETTERS, 2009, 2 (05) :206-215
[29]   Spatial patterns of benthic megahabitats and conservation planning in the Abrolhos Bank [J].
Moura, Rodrigo Leao ;
Secchin, Nelio Augusto ;
Amado-Filho, Gilberto Menezes ;
Francini-Filho, Ronaldo Bastos ;
Freitas, Matheus Oliveira ;
Minte-Vera, Carolina Viviana ;
Teixeira, Joao Batista ;
Thompson, Fabiano Lopes ;
Dutra, Guilherme Fraga ;
Gomes Sumida, Paulo Yukio ;
Guth, Arthur Zigliatti ;
Lopes, Rubens Mendes ;
Bastos, Alex Cardoso .
CONTINENTAL SHELF RESEARCH, 2013, 70 :109-117
[30]   Operationalizing ecological connectivity in spatial conservation planning with Marxan Connect [J].
Daigle, Remi M. ;
Metaxas, Anna ;
Balbar, Arieanna C. ;
McGowan, Jennifer ;
Treml, Eric A. ;
Kuempel, Caitlin D. ;
Possingham, Hugh P. ;
Beger, Maria .
METHODS IN ECOLOGY AND EVOLUTION, 2020, 11 (04) :570-579