Electrochemical alternative to obtain reduced graphene oxide by pulse potential: Effect of synthesis parameters and study of corrosion properties

被引:13
作者
Lopez-Oyama, A. B. [1 ,2 ]
Dominguez-Crespo, M. A. [1 ]
Torres-Huerta, A. M. [1 ]
Onofre-Bustamante, E. [1 ]
Gamez-Corrales, R. [3 ]
Cayetano-Castro, N. [4 ]
机构
[1] Inst Politecn Nacl, CICATA Altamira, Grp CIAMS, Km 14-5,Carretera Tampico Puerto Ind Altamira, Altamira 89600, Tamaulipas, Mexico
[2] CONACYT CICATA Altamira, Carretera Tampico Puerto Ind Altamira, Altamira 89600, Tamaulipas, Mexico
[3] Univ Sonora, Blvd Rodriguez & Rosales S-N, Hermosillo 83000, Sonora, Mexico
[4] Inst Politecn Nacl, Ctr Nanociencias Micro & Nanotecnol, Mexico City 07300, DF, Mexico
关键词
Graphite; Graphene oxide; Electrochemically reduced graphene oxide; Corrosion resistance; MEMBRANE FUEL-CELL; STAINLESS-STEEL; DIRECT ELECTRODEPOSITION; SCALABLE PRODUCTION; CHEMICAL-REDUCTION; ENERGY-STORAGE; GRAPHITE OXIDE; BIPOLAR PLATES; LARGE-AREA; FILMS;
D O I
10.1016/j.diamond.2018.04.014
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Two methods to form reduced graphene oxide (rGO) coatings are proposed as simple, rapid and reproducible alternatives to protect 304 L SS substrates. The first route combines traditional Hummers' modified method and pulse electrodeposition technique (-1.6 and -2 V-SCE) whereas with the second one, reduction is obtained by applying the potentiostatic method (-1 to -4 V-SCE) in a solution containing graphite + H2SO4. The electrochemical results show that ERGO coatings can properly protect metallic substrates only when they are obtained with an applied potential of -4 V-SCE. To carry out this process, strong oxidants, extensive water amounts and long reaction times are avoided.
引用
收藏
页码:167 / 188
页数:22
相关论文
共 82 条
[1]  
Al-Sammarraie A.M.A., 2017, INT J CORROSION, V2017, P8
[2]   Optical investigation of reduced graphene oxide and reduced graphene oxide/CNTs grown via simple CVD method [J].
Allaedini, Ghazaleh ;
Mahmoudi, Ebrahim ;
Aminayi, Payam ;
Tasirin, Siti Masrinda ;
Mohammad, Abdul Wahab .
SYNTHETIC METALS, 2016, 220 :72-77
[3]   Electrochemically Exfoliated Graphene and Graphene Oxide for Energy Storage and Electrochemistry Applications [J].
Ambrosi, Adriano ;
Pumera, Martin .
CHEMISTRY-A EUROPEAN JOURNAL, 2016, 22 (01) :153-159
[4]  
[Anonymous], D454109E1 ASTM
[5]  
[Anonymous], 2011, DES HDB SER AM IR ST, P1
[6]  
Aristatil G., 2015, ASIAN J SCI RES, V8, P245, DOI DOI 10.3923/ajsr.2015.245.263
[7]   Green preparation of reduced graphene oxide for sensing and energy storage applications [J].
Bo, Zheng ;
Shuai, Xiaorui ;
Mao, Shun ;
Yang, Huachao ;
Qian, Jiajing ;
Chen, Junhong ;
Yan, Jianhua ;
Cen, Kefa .
SCIENTIFIC REPORTS, 2014, 4
[8]   Adatoms in graphene [J].
Castro Neto, A. H. ;
Kotov, V. N. ;
Nilsson, J. ;
Pereira, V. M. ;
Peres, N. M. R. ;
Uchoa, B. .
SOLID STATE COMMUNICATIONS, 2009, 149 (27-28) :1094-1100
[9]   An improved Hummers method for eco-friendly synthesis of graphene oxide [J].
Chen, Ji ;
Yao, Bowen ;
Li, Chun ;
Shi, Gaoquan .
CARBON, 2013, 64 :225-229
[10]   Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application [J].
Chen, Liuyun ;
Tang, Yanhong ;
Wang, Ke ;
Liu, Chengbin ;
Luo, Shenglian .
ELECTROCHEMISTRY COMMUNICATIONS, 2011, 13 (02) :133-137