Bayesian P-splines and advanced computing in R for a changepoint analysis on spatio-temporal point processes

被引:2
|
作者
Altieri, L. [1 ]
Cocchi, D. [1 ]
Greco, F. [1 ]
Illian, J. B. [2 ,3 ]
Scott, E. M. [4 ]
机构
[1] Univ Bologna, Dept Stat Sci, Bologna, Italy
[2] Univ St Andrews, CREEM, Sch Math & Stat, St Andrews KY16 9AJ, Fife, Scotland
[3] NTNU, Trondheim, Norway
[4] Univ Glasgow, Sch Math & Stat, Glasgow, Lanark, Scotland
关键词
Earthquake data; changepoint analysis; spatio-temporal point processes; spatial effect; log-Gaussian Cox processes; Bayesian P-splines; parallel computing; 62H11; 62M30; MODELS; DEPENDENCE; INFERENCE;
D O I
10.1080/00949655.2016.1146280
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This work presents advanced computational aspects of a new method for changepoint detection on spatio-temporal point process data. We summarize the methodology, based on building a Bayesian hierarchical model for the data and declaring prior conjectures on the number and positions of the changepoints, and show how to take decisions regarding the acceptance of potential changepoints. The focus of this work is about choosing an approach that detects the correct changepoint and delivers smooth reliable estimates in a feasible computational time; we propose Bayesian P-splines as a suitable tool for managing spatial variation, both under a computational and a model fitting performance perspective. The main computational challenges are outlined and a solution involving parallel computing in R is proposed and tested on a simulation study. An application is also presented on a data set of seismic events in Italy over the last 20 years.
引用
收藏
页码:2531 / 2545
页数:15
相关论文
共 30 条
  • [11] Spatio-temporal analysis of plant pests in a greenhouse using a Bayesian approach
    Poncet, Christine
    Lemesle, Valerie
    Mailleret, Ludovic
    Bout, Alexandre
    Boll, Roger
    Vaglio, Joelle
    AGRICULTURAL AND FOREST ENTOMOLOGY, 2010, 12 (03) : 325 - 332
  • [12] Estimating Second-Order Characteristics of Inhomogeneous Spatio-Temporal Point Processes
    Gabriel, Edith
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2014, 16 (02) : 411 - 431
  • [13] Bayesian penalized spline models for the analysis of spatio-temporal count data
    Bauer, Cici
    Wakefield, Jon
    Rue, Havard
    Self, Steve
    Feng, Zijian
    Wang, Yu
    STATISTICS IN MEDICINE, 2016, 35 (11) : 1848 - 1865
  • [14] Bayesian spatio-temporal survival analysis for all types of censoring with application to a wildlife disease study
    Yao, Kehui
    Zhu, Jun
    O'Brien, Daniel J.
    Walsh, Daniel
    ENVIRONMETRICS, 2023, 34 (08)
  • [15] Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior
    van Gerven, Marcel A. J.
    Cseke, Botond
    de lange, Floris P.
    Heskes, Tom
    NEUROIMAGE, 2010, 50 (01) : 150 - 161
  • [16] Larval fish abundance classification and modeling through spatio-temporal point processes approach
    Lo Galbo, Giada
    Adelfio, Giada
    Cuttitta, Angela
    Patti, Bernardo
    Torri, Marco
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2025, : 461 - 493
  • [17] Significance tests for covariate-dependent trends in inhomogeneous spatio-temporal point processes
    Diaz-Avalos, Carlos
    Juan, P.
    Mateu, J.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2014, 28 (03) : 593 - 609
  • [18] Deep Mixture Point Processes: Spatio-temporal Event Prediction with Rich Contextual Information
    Okawa, Maya
    Iwata, Tomoharu
    Kurashima, Takeshi
    Tanaka, Yusuke
    Toda, Hiroyuki
    Ueda, Naonori
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 373 - 383
  • [19] Spatio-Temporal Analysis of Epidemic Phenomena Using the R Package surveillance
    Meyer, Sebastian
    Held, Leonhard
    Hohle, Michael
    JOURNAL OF STATISTICAL SOFTWARE, 2017, 77 (11):
  • [20] Some properties of local weighted second-order statistics for spatio-temporal point processes
    Adelfio, Giada
    Siino, Marianna
    Mateu, Jorge
    Rodriguez-Cortes, Francisco J.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2020, 34 (01) : 149 - 168