Bayesian P-splines and advanced computing in R for a changepoint analysis on spatio-temporal point processes

被引:2
|
作者
Altieri, L. [1 ]
Cocchi, D. [1 ]
Greco, F. [1 ]
Illian, J. B. [2 ,3 ]
Scott, E. M. [4 ]
机构
[1] Univ Bologna, Dept Stat Sci, Bologna, Italy
[2] Univ St Andrews, CREEM, Sch Math & Stat, St Andrews KY16 9AJ, Fife, Scotland
[3] NTNU, Trondheim, Norway
[4] Univ Glasgow, Sch Math & Stat, Glasgow, Lanark, Scotland
关键词
Earthquake data; changepoint analysis; spatio-temporal point processes; spatial effect; log-Gaussian Cox processes; Bayesian P-splines; parallel computing; 62H11; 62M30; MODELS; DEPENDENCE; INFERENCE;
D O I
10.1080/00949655.2016.1146280
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This work presents advanced computational aspects of a new method for changepoint detection on spatio-temporal point process data. We summarize the methodology, based on building a Bayesian hierarchical model for the data and declaring prior conjectures on the number and positions of the changepoints, and show how to take decisions regarding the acceptance of potential changepoints. The focus of this work is about choosing an approach that detects the correct changepoint and delivers smooth reliable estimates in a feasible computational time; we propose Bayesian P-splines as a suitable tool for managing spatial variation, both under a computational and a model fitting performance perspective. The main computational challenges are outlined and a solution involving parallel computing in R is proposed and tested on a simulation study. An application is also presented on a data set of seismic events in Italy over the last 20 years.
引用
收藏
页码:2531 / 2545
页数:15
相关论文
共 30 条
  • [1] A changepoint analysis of spatio-temporal point processes
    Altieri, Linda
    Scott, E. Marian
    Cocchi, Daniela
    Illian, Janine B.
    SPATIAL STATISTICS, 2015, 14 : 197 - 207
  • [2] Flexible Bayesian P-splines for smoothing age-specific spatio-temporal mortality patterns
    Goicoa, T.
    Adin, A.
    Etxeberria, J.
    Militino, A. F.
    Ugarte, M. D.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (02) : 384 - 403
  • [3] Spatio-temporal Diffusion Point Processes
    Yuan, Yuan
    Ding, Jingtao
    Shao, Chenyang
    Jin, Depeng
    Li, Yong
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 3173 - 3184
  • [4] Crime risk assessment through Cox and self-exciting spatio-temporal point processes
    Escudero, Isabel
    Angulo, Jose M.
    Mateu, Jorge
    Choiruddin, Achmad
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2025, 39 (01) : 181 - 203
  • [5] Mark variograms for spatio-temporal point processes
    Stoyan, Dietrich
    Rodriguez-Cortes, Francisco J.
    Mateu, Jorge
    Gille, Wilfried
    SPATIAL STATISTICS, 2017, 20 : 125 - 147
  • [6] Imitation Learning of Neural Spatio-Temporal Point Processes
    Zhu, Shixiang
    Li, Shuang
    Peng, Zhigang
    Xie, Yao
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (11) : 5391 - 5402
  • [7] INHOMOGENEOUS SPATIO-TEMPORAL POINT PROCESSES ON LINEAR NETWORKS FOR VISITORS' STOPS DATA
    D'Angelo, Nicoletta
    Adelfio, Giada
    Abbruzzo, Antonino
    Mateu, Jorge
    ANNALS OF APPLIED STATISTICS, 2022, 16 (02) : 791 - 815
  • [8] Hierarchical Bayesian modeling of spatio-temporal area-interaction processes
    Chen, Jiaxun
    Micheas, Athanasios C.
    Holan, Scott H.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 167
  • [9] Non-Parametric Analysis of Spatial and Spatio-Temporal Point Patterns
    Gonzalez, Jonatan A.
    Moraga, Paula
    R JOURNAL, 2023, 15 (01): : 65 - 82
  • [10] Bayesian spatio-temporal analysis of the COVID-19 pandemic in Catalonia
    Satorra, Pau
    Tebe, Cristian
    SCIENTIFIC REPORTS, 2024, 14 (01)