Bound States in the Continuum Underpin Near-Lossless Maximum Chirality in Dielectric Metasurfaces

被引:123
作者
Gorkunov, Maxim V. [1 ]
Antonov, Alexander A. [1 ]
Tuz, Vladimir R. [2 ]
Kupriianov, Anton S. [3 ]
Kivshar, Yuri S. [4 ]
机构
[1] Russian Acad Sci, Shubnikov Inst Crystallog, FSRC Crystallog & Photon, Moscow 119333, Russia
[2] Jilin Univ, Coll Elect Sci & Engn, Int Ctr Future Sci, State Key Lab Integrated Optoelect, 2699 Qianjin St, Changchun 130012, Peoples R China
[3] Jilin Univ, Coll Phys, 2699 Qianjin St, Changchun 130012, Peoples R China
[4] Australian Natl Univ, Nonlinear Phys Ctr, Canberra, ACT 2601, Australia
基金
澳大利亚研究理事会; 国家重点研发计划;
关键词
bound states in the continuum; chiral response; metasurfaces; microwave experiments; Mie resonances; PHOTONIC METAMATERIAL; RESONANCE;
D O I
10.1002/adom.202100797
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Metasurfaces without a mirror symmetry may exhibit chiral electromagnetic response that differs substantially from any type of polarization transformation. A typical design of chiral metasurfaces is based on a complex arrangement of meta-atoms with chiral shapes assembled into rotationally symmetric arrays. Here it is demonstrated that, in a sharp contrast to our intuition, metasurfaces that break all point symmetries can outperform their rotationally symmetric counterparts and exhibit near-lossless maximum chirality. The authors employ the special type of high-quality-factor resonances-bound states in the continuum (BICs)-that are manifested in physical systems as quasi-BICs, and allow engineering the coupling of light with resonant metasurfaces to achieve maximum chirality. A dielectric metasurface composed of pairs of rectangular bars is designed that fully transmits one circular polarization of light and resonantly reflects the other circular polarization without any polarization conversion. Proof-of-concept experimental results that confirm directly the prediction of maximum chiral response of the BIC-empowered asymmetric resonant dielectric metasurfaces are presented.
引用
收藏
页数:9
相关论文
共 44 条
[11]   Gold Helix Photonic Metamaterial as Broadband Circular Polarizer [J].
Gansel, Justyna K. ;
Thiel, Michael ;
Rill, Michael S. ;
Decker, Manuel ;
Bade, Klaus ;
Saile, Volker ;
von Freymann, Georg ;
Linden, Stefan ;
Wegener, Martin .
SCIENCE, 2009, 325 (5947) :1513-1515
[12]   Plasmonic nanohelix metamaterials with tailorable giant circular dichroism [J].
Gibbs, J. G. ;
Mark, A. G. ;
Eslami, S. ;
Fischer, P. .
APPLIED PHYSICS LETTERS, 2013, 103 (21)
[13]   The Search for Chiral Asymmetry as a Potential Biosignature in our Solar System [J].
Glavin, Daniel P. ;
Burton, Aaron S. ;
Elsila, Jamie E. ;
Aponte, Jose C. ;
Dworkin, Jason P. .
CHEMICAL REVIEWS, 2020, 120 (11) :4660-4689
[14]   Extreme optical activity and circular dichroism of chiral metal hole arrays [J].
Gorkunov, M. V. ;
Ezhov, A. A. ;
Artemov, V. V. ;
Rogov, O. Y. ;
Yudin, S. G. .
APPLIED PHYSICS LETTERS, 2014, 104 (22)
[15]   Metasurfaces with Maximum Chirality Empowered by Bound States in the Continuum [J].
Gorkunov, Maxim, V ;
Antonov, Alexander A. ;
Kivshar, Yuri S. .
PHYSICAL REVIEW LETTERS, 2020, 125 (09)
[16]   Chiral visible light metasurface patterned in monocrystalline silicon by focused ion beam [J].
Gorkunov, Maxim V. ;
Rogov, Oleg Y. ;
Kondratov, Alexey V. ;
Artemov, Vladimir V. ;
Gainutdinov, Radmir V. ;
Ezhov, Alexander A. .
SCIENTIFIC REPORTS, 2018, 8
[17]   Chiral plasmonics [J].
Hentschel, Mario ;
Schaeferling, Martin ;
Duan, Xiaoyang ;
Giessen, Harald ;
Liu, Na .
SCIENCE ADVANCES, 2017, 3 (05)
[18]  
Hermann C, 1934, Z KRISTALLOGR, V89, P32
[19]   Tapered N-helical metamaterials with three-fold rotational symmetry as improved circular polarizers [J].
Kaschke, Johannes ;
Blome, Mark ;
Burger, Sven ;
Wegener, Martin .
OPTICS EXPRESS, 2014, 22 (17) :19936-19946
[20]  
Kelvin W. T. B., 1894, The Molecular Tactics of a Crystal