Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa-Holm and Hunter-Saxton Systems

被引:7
作者
Yan Lu [1 ]
Song Jun-Feng [1 ,2 ]
Qu Chang-Zheng [1 ]
机构
[1] NW Univ Xian, Dept Math, Xian 710069, Peoples R China
[2] Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Peoples R China
基金
中国国家自然科学基金;
关键词
GEODESIC-FLOW; EQUATION;
D O I
10.1088/0256-307X/28/5/050204
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present the multi-component Hunter-Saxton and mu-Camassa-Holm systems. It is shown that the multicomponent Camassa-Holm, Hunter-Saxton and mu-Camassa-Holm systems are geometrically integrable, namely they describe pseudo-spherical surfaces. As a consequence, their infinite number of conservation laws can be directly constructed. For the three-component Camassa-Holm and Hunter-Saxton systems, their nonlocal symmetries depending on the pseudo-potentials are obtained.
引用
收藏
页数:4
相关论文
共 23 条
[1]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[2]   CONSERVATION-LAWS FOR NONLINEAR EVOLUTION-EQUATIONS [J].
CAVALCANTE, JA ;
TENENBLAT, K .
JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (04) :1044-1049
[3]   A two-component generalization of the Camassa-Holm equation and its solutions [J].
Chen, M ;
Liu, SQ ;
Zhang, YJ .
LETTERS IN MATHEMATICAL PHYSICS, 2006, 75 (01) :1-15
[4]  
CHERN SS, 1986, STUD APPL MATH, V74, P55
[5]   Integrable equations arising from motions of plane curves [J].
Chou, KS ;
Qu, CZ .
PHYSICA D-NONLINEAR PHENOMENA, 2002, 162 (1-2) :9-33
[6]   On an integrable two-component Camassa-Holm shallow water system [J].
Constantin, Adrian ;
Ivanov, Rossen I. .
PHYSICS LETTERS A, 2008, 372 (48) :7129-7132
[7]  
FU Y, 2010, ARXIV10092466V2
[8]   SYMPLECTIC STRUCTURES, THEIR BACKLUND-TRANSFORMATIONS AND HEREDITARY SYMMETRIES [J].
FUCHSSTEINER, B ;
FOKAS, AS .
PHYSICA D, 1981, 4 (01) :47-66
[9]  
GALAS F, 1999, J PHYS A-MATH GEN, V25, pL981
[10]   Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation [J].
Guha, Partha ;
Olver, Peter J. .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2006, 2