Coincidence points of multivalued mappings in (q 1, q 2)-quasimetric spaces

被引:12
|
作者
Arutyunov, A. V. [1 ,2 ]
Greshnov, A. V. [3 ,4 ]
机构
[1] RUDN Univ, Moscow 117198, Russia
[2] Moscow MV Lomonosov State Univ, Fac Computat Math & Cybernet, Moscow 119992, Russia
[3] Novosibirsk State Univ, Novosibirsk 630090, Russia
[4] Russian Acad Sci, Sobolev Inst Math, Siberian Branch, Novosibirsk 630090, Russia
基金
俄罗斯科学基金会;
关键词
D O I
10.1134/S1064562417050064
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The properties of (q (1), q (2))-quasimetric spaces are examined. Multivalued covering mappings between (q (1), q (2))-quasimetric spaces are investigated. Given two multivalued mappings between (q (1), q (2))-quasimetric spaces such that one of them is covering and the other satisfies the Lipschitz condition, sufficient conditions for these mappings to have a coincidence point are obtained. A theorem on the stability of coincidence points with respect to small perturbations in the considered mappings is proved.
引用
收藏
页码:438 / 441
页数:4
相关论文
共 50 条
  • [1] Coincidence points of multivalued mappings in (q1, q2)-quasimetric spaces
    A. V. Arutyunov
    A. V. Greshnov
    Doklady Mathematics, 2017, 96 : 438 - 441
  • [2] Theory of (q 1, q 2)-quasimetric spaces and coincidence points
    Arutyunov, A. V.
    Greshnov, A. V.
    DOKLADY MATHEMATICS, 2016, 94 (01) : 434 - 437
  • [3] (q1, q2)-quasimetric spaces. Covering mappings and coincidence points
    Arutyunov, A. V.
    Greshnov, A. V.
    IZVESTIYA MATHEMATICS, 2018, 82 (02) : 245 - 272
  • [4] (q 1; q2)-QUASIMETRIC SPACES. COVERING MAPPINGS AND COINCIDENCE POINTS. A REVIEW OF THE RESULTS
    Arutyunov, A., V
    Greshnov, A., V
    FIXED POINT THEORY, 2022, 23 (02): : 473 - 486
  • [5] Theory of (q1, q2)-quasimetric spaces and coincidence points
    A. V. Arutyunov
    A. V. Greshnov
    Doklady Mathematics, 2016, 94 : 434 - 437
  • [6] Q-Functions on Quasimetric Spaces and Fixed Points for Multivalued Maps
    Marin, J.
    Romaguera, S.
    Tirado, P.
    FIXED POINT THEORY AND APPLICATIONS, 2011,
  • [7] Fixed Points of Proinov Type Multivalued Mappings on Quasimetric Spaces
    Karapinar, Erdal
    Fulga, Andreea
    Yesilkaya, Seher Sultan
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [8] On coincidence points of multivalued vector mappings of metric spaces
    Zhukovskiy, E. S.
    MATHEMATICAL NOTES, 2016, 100 (3-4) : 363 - 379
  • [9] On coincidence points of multivalued vector mappings of metric spaces
    E. S. Zhukovskiy
    Mathematical Notes, 2016, 100 : 363 - 379
  • [10] The Existence of Zeros of Multivalued Functionals, Coincidence Points, and Fixed Points in f-Quasimetric Spaces
    Fomenko, T. N.
    MATHEMATICAL NOTES, 2021, 110 (3-4) : 583 - 591