Polarimetric synthetic aperture radar image segmentation by convolutional neural network using graphical processing units

被引:88
作者
Wang, Shui-Hua [1 ,2 ]
Sun, Junding [1 ]
Phillips, Preetha [3 ]
Zhao, Guihu [4 ,5 ]
Zhang, Yu-Dong [1 ,2 ]
机构
[1] Henan Polytech Univ, Sch Comp Sci & Technol, Jiaozuo 454000, Henan, Peoples R China
[2] Univ Leicester, Dept Informat, Leicester LE1 7RH, Leics, England
[3] West Virginia Sch Osteopath Med, 400 N Lee St, Lewisburg, WV 24901 USA
[4] Cent South Univ, Natl Clin Res Ctr Geriatr Disorders, Changsha 410083, Hunan, Peoples R China
[5] Cent South Univ, Xiangya Hosp, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolutional neural network; Image segmentation; Polarimetric synthetic aperture radar; AlexNet; Pauli decomposition; Convolution layer; Confusion matrix; Rectified linear unit; Max pooling; Graphical processing unit; CLASSIFICATION; SYSTEM;
D O I
10.1007/s11554-017-0717-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image segmentation is an important application of polarimetric synthetic aperture radar. This study aimed to create an 11-layer deep convolutional neural network for this task. The Pauli decomposition formed the RGB image and was used as the input. We created an 11-layer convolutional neural network (CNN). L-band data over the San Francisco bay area and C-band data over Flevoland area were employed as the dataset. For the San Francisco bay PSAR image, our method achieved an overall accuracy of 97.32%, which was at least 2% superior to four state-of-the-art approaches. We provided the confusion matrix over test area, and the kernel visualization. We compared the max pooling and average pooling. We validated by experiment that four convolution layers perform the best. Besides, our method gave better results than AlexNet. The GPU yields a 173x acceleration on the training samples, and a 181x acceleration on the test samples, compared to standard CPU. For the Flevoland PSAR image, our 11-layer CNN also gives better overall accuracy than five state-of-the-art approaches. The convolutional neural network is better than traditional classifiers and is effective in remote sensing image segmentation.
引用
收藏
页码:631 / 642
页数:12
相关论文
共 36 条
[1]   Efficient object-based surveillance image search using spatial pooling of convolutional features [J].
Ahmad, Jamil ;
Mehmood, Irfan ;
Baik, Sung Wook .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2017, 45 :62-76
[2]  
[Anonymous], 2013, AUTOMATIC FACE GESTU
[3]  
Azizpour Hossein, 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), P36, DOI 10.1109/CVPRW.2015.7301270
[4]   Text/non-text image classification in the wild with convolutional neural networks [J].
Bai, Xiang ;
Shi, Baoguang ;
Zhang, Chengquan ;
Cai, Xuan ;
Qi, Li .
PATTERN RECOGNITION, 2017, 66 :437-446
[5]   Synthetic aperture radar with dynamic metasurface antennas: a conceptual development [J].
Boyarsky, Michael ;
Sleasman, Timothy ;
Pulido-Mancera, Laura ;
Fromenteze, Thomas ;
Pedross-Engel, Andreas ;
Watts, Claire M. ;
Imani, Mohammadreza F. ;
Reynolds, Matthew S. ;
Smith, David R. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2017, 34 (05) :A22-A36
[6]   A Feature-Free 30-Disease Pathological Brain Detection System by Linear Regression Classifier [J].
Chen, Yi ;
Shao, Ying ;
Yan, Jie ;
Yuan, Ti-Fei ;
Qu, Yanwen ;
Lee, Elizabeth ;
Wang, Shuihua .
CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS, 2017, 16 (01) :5-10
[7]   Automatic ear detection and feature extraction using Geometric Morphometrics and convolutional neural networks [J].
Cintas, Celia ;
Quinto-Sanchez, Mirsha ;
Acuna, Victor ;
Paschetta, Carolina ;
de Azevedo, Soledad ;
Silva de Cerqueira, Caio Cesar ;
Ramallo, Virginia ;
Gallo, Carla ;
Poletti, Giovanni ;
Bortolini, Maria Catira ;
Canizales-Quinteros, Samuel ;
Rothhammer, Francisco ;
Bedoya, Gabriel ;
Ruiz-Linares, Andres ;
Gonzalez-Jose, Rolando ;
Delrieux, Claudio .
IET BIOMETRICS, 2017, 6 (03) :211-223
[8]   Articulated and Generalized Gaussian Kernel Correlation for Human Pose Estimation [J].
Ding, Meng ;
Fan, Guoliang .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (02) :776-789
[9]   Multilayer Joint Gait-Pose Manifolds for Human Gait Motion Modeling [J].
Ding, Meng ;
Fan, Guoliang .
IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (11) :2413-2424
[10]  
Ding M, 2012, IEEE IMAGE PROC, P1977, DOI 10.1109/ICIP.2012.6467275