A Stochastic Restricted Two-Parameter Estimator in Linear Regression Model

被引:10
作者
Yang, Hu [1 ]
Cui, Juan [1 ]
机构
[1] Chongqing Univ, Coll Math & Phys, Chongqing 400030, Peoples R China
关键词
Mean squared error matrix; Mixed estimator; Multicollinearity; Stochastic linear restrictions; Two-parameter estimator; RIDGE-REGRESSION; LIU ESTIMATOR; IMPROVEMENT; ERROR;
D O I
10.1080/03610921003778217
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Ozkale and Kaciranlar (2007) proposed a two-parameter estimator (TPE) for the unknown parameter vector in linear regression when exact restrictions are assumed to hold. In this article, under the assumption that the errors are not independent and identically distributed, we introduce a new estimator by combining the ideas underlying the mixed estimator (ME) and the two-parameter estimator when stochastic linear restrictions are assumed to hold. The new estimator is called the stochastic restricted two-parameter estimator (SRTPE) and necessary and sufficient conditions for the superiority of the SRTPE over the ME and TPE are derived by the mean squared error matrix (MSEM) criterion. Furthermore, selection of the biasing parameters is discussed and a numerical example is given to illustrate some of the theoretical results.
引用
收藏
页码:2318 / 2325
页数:8
相关论文
共 12 条
[1]   Mean squared error matrix comparisons of some biased estimators in linear regression [J].
Akdeniz, F ;
Erol, H .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2003, 32 (12) :2389-2413
[2]  
[Anonymous], TECHNOMETRICS
[3]   Stein-type improvement under stochastic constraints: Use of multivariate Student-t model in regression [J].
Arashi, M. ;
Tabatabaey, S. M. M. .
STATISTICS & PROBABILITY LETTERS, 2008, 78 (14) :2142-2153
[4]  
FAREBROTHER RW, 1976, J ROY STAT SOC B MET, V38, P248
[5]  
Gruber M., 1998, Improving Efficiency by Shrinkage: The James-Stein and Ridge Regression Estimators
[6]   Improvement of the Liu estimator in linear regression model [J].
Hubert, MH ;
Wijekoon, P .
STATISTICAL PAPERS, 2006, 47 (03) :471-479
[7]  
LIU KJ, 1993, COMMUN STAT THEORY, V22, P393
[8]  
OZAKLE MR, 2007, COMMUN STAT-THEOR M, V36, P2707
[9]   A stochastic restricted ridge regression estimator [J].
Ozkale, M. Revan .
JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (08) :1706-1716
[10]  
Rao C.R., 1995, LINEAR MODELS LEAST