Deep Learning for Medical Anomaly Detection - A Survey

被引:182
作者
Fernando, Tharindu [1 ]
Gammulle, Harshala [1 ]
Denman, Simon [1 ]
Sridharan, Sridha [1 ]
Fookes, Clinton [1 ]
机构
[1] Queensland Univ Technol, Fac Engn, Sch Elect Engn & Robot, 2 George St, Brisbane, Qld 4000, Australia
关键词
Deep learning; anomaly detection; machine learning; temporal analysis; LONG-TERM; NEURAL-NETWORK; PREDICTION; EPILEPSY; CLASSIFICATION; DIAGNOSIS; CANCER;
D O I
10.1145/3464423
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Machine learning-based medical anomaly detection is an important problem that has been extensively studied. Numerous approaches have been proposed across various medical application domains and we observe several similarities across these distinct applications. Despite this comparability, we observe a lack of structured organisation of these diverse research applications such that their advantages and limitations can be studied. The principal aim of this survey is to provide a thorough theoretical analysis of popular deep learning techniques in medical anomaly detection. In particular, we contribute a coherent and systematic review of state-of-the-art techniques, comparing and contrasting their architectural differences as well as training algorithms. Furthermore, we provide a comprehensive overview of deep model interpretation strategies that can be used to interpret model decisions. In addition, we outline the key limitations of existing deep medical anomaly detection techniques and propose key research directions for further investigation.
引用
收藏
页数:37
相关论文
共 156 条
[71]   Epileptic Seizure Prediction Using Big Data and Deep Learning: Toward a Mobile System [J].
Kiral-Kornek, Isabell ;
Roy, Subhrajit ;
Nurse, Ewan ;
Mashford, Benjamin ;
Karoly, Philippa ;
Carroll, Thomas ;
Payne, Daniel ;
Saha, Susmita ;
Baldassano, Steven ;
O'Brien, Terence ;
Grayden, David ;
Cook, Mark ;
Freestone, Dean ;
Harrer, Stefan .
EBIOMEDICINE, 2018, 27 :103-111
[72]   Medical Image Description Using Multi-task-loss CNN [J].
Kisilev, Pavel ;
Sason, Eli ;
Barkan, Ella ;
Hashoul, Sharbell .
DEEP LEARNING AND DATA LABELING FOR MEDICAL APPLICATIONS, 2016, 10008 :121-129
[73]   Deep learning algorithms for automated detection of Crohn's disease ulcers by video capsule endoscopy [J].
Klang, Eyal ;
Barash, Yiftach ;
Margalit, Reuma Yehuda ;
Soffer, Shelly ;
Shimon, Orit ;
Albshesh, Ahmad ;
Ben-Horin, Shomron ;
Amitai, Marianne Michal ;
Eliakim, Rami ;
Kopylov, Uri .
GASTROINTESTINAL ENDOSCOPY, 2020, 91 (03) :606-+
[74]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[75]   Epilepsyecosystem.org: crowd-sourcing reproducible seizure prediction with long-term human intracranial EEG [J].
Kuhlmann, Levin ;
Karoly, Philippa ;
Freestone, Dean R. ;
Brinkmann, Benjamin H. ;
Temko, Andriy ;
Barachant, Alexandre ;
Li, Feng ;
Titericz, Gilberto, Jr. ;
Lang, Brian W. ;
Lavery, Daniel ;
Roman, Kelly ;
Broadhead, Derek ;
Dobson, Scott ;
Jones, Gareth ;
Tang, Qingnan ;
Ivanenko, Irina ;
Panichev, Oleg ;
Proix, Timothee ;
Nahlik, Michal ;
Grunberg, Daniel B. ;
Reuben, Chip ;
Worrell, Gregory ;
Litt, Brian ;
Liley, David T. J. ;
Grayden, David B. ;
Cook, Mark J. .
BRAIN, 2018, 141 :2619-2630
[76]   Uncertainty quantification using Bayesian neural networks in classification: Application to biomedical image segmentation [J].
Kwon, Yongchan ;
Won, Joong-Ho ;
Kim, Beom Joon ;
Paik, Myunghee Cho .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 142
[77]   Mindfulness Meditation Is Related to Long-Lasting Changes in Hippocampal Functional Topology during Resting State: A Magnetoencephalography Study [J].
Lardone, Anna ;
Liparoti, Marianna ;
Sorrentino, Pierpaolo ;
Rucco, Rosaria ;
Jacini, Francesca ;
Polverino, Arianna ;
Minino, Roberta ;
Pesoli, Matteo ;
Baselice, Fabio ;
Sorriso, Antonietta ;
Ferraioli, Giampaolo ;
Sorrentino, Giuseppe ;
Mandolesi, Laura .
NEURAL PLASTICITY, 2018, 2018
[78]   Phonocardiographic Sensing Using Deep Learning for Abnormal Heartbeat Detection [J].
Latif, Siddique ;
Usman, Muhammad ;
Rana, Rajib ;
Qadir, Junaid .
IEEE SENSORS JOURNAL, 2018, 18 (22) :9393-9400
[79]   Automated diagnosis of prostate cancer in multi-parametric MRI based on multimodal convolutional neural networks [J].
Le, Minh Hung ;
Chen, Jingyu ;
Wang, Liang ;
Wang, Zhiwei ;
Liu, Wenyu ;
Cheng, Kwang-Ting ;
Yang, Xin .
PHYSICS IN MEDICINE AND BIOLOGY, 2017, 62 (16) :6497-6514
[80]   Leveraging uncertainty information from deep neural networks for disease detection [J].
Leibig, Christian ;
Allken, Vaneeda ;
Ayhan, Murat Seckin ;
Berens, Philipp ;
Wahl, Siegfried .
SCIENTIFIC REPORTS, 2017, 7