Deep Learning for Medical Anomaly Detection - A Survey

被引:182
作者
Fernando, Tharindu [1 ]
Gammulle, Harshala [1 ]
Denman, Simon [1 ]
Sridharan, Sridha [1 ]
Fookes, Clinton [1 ]
机构
[1] Queensland Univ Technol, Fac Engn, Sch Elect Engn & Robot, 2 George St, Brisbane, Qld 4000, Australia
关键词
Deep learning; anomaly detection; machine learning; temporal analysis; LONG-TERM; NEURAL-NETWORK; PREDICTION; EPILEPSY; CLASSIFICATION; DIAGNOSIS; CANCER;
D O I
10.1145/3464423
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Machine learning-based medical anomaly detection is an important problem that has been extensively studied. Numerous approaches have been proposed across various medical application domains and we observe several similarities across these distinct applications. Despite this comparability, we observe a lack of structured organisation of these diverse research applications such that their advantages and limitations can be studied. The principal aim of this survey is to provide a thorough theoretical analysis of popular deep learning techniques in medical anomaly detection. In particular, we contribute a coherent and systematic review of state-of-the-art techniques, comparing and contrasting their architectural differences as well as training algorithms. Furthermore, we provide a comprehensive overview of deep model interpretation strategies that can be used to interpret model decisions. In addition, we outline the key limitations of existing deep medical anomaly detection techniques and propose key research directions for further investigation.
引用
收藏
页数:37
相关论文
共 156 条
[61]   Generation of Multimodal Justification Using Visual Word Constraint Model for Explainable Computer-Aided Diagnosis [J].
Lee, Hyebin ;
Kim, Seong Tae ;
Ro, Yong Man .
INTERPRETABILITY OF MACHINE INTELLIGENCE IN MEDICAL IMAGE COMPUTING AND MULTIMODAL LEARNING FOR CLINICAL DECISION SUPPORT, 2020, 11797 :21-29
[62]   EPILEPSIAE - A European epilepsy database [J].
Ihle, Matthias ;
Feldwisch-Drentrup, Hinnerk ;
Teixeira, Cesar A. ;
Witon, Adrien ;
Schelter, Bjoern ;
Timmer, Jens ;
Schulze-Bonhage, Andreas .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2012, 106 (03) :127-138
[63]   Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural networks [J].
Islam J. ;
Zhang Y. .
Brain Informatics, 2018, 5 (2)
[64]   Amnestic Mild Cognitive Impairment Is Associated With Frequency-Specific Brain Network Alterations in Temporal Poles [J].
Jacini, Francesca ;
Sorrentino, Pierpaolo ;
Lardone, Anna ;
Rucco, Rosaria ;
Baselice, Fabio ;
Cavaliere, Carlo ;
Aiello, Marco ;
Orsini, Mario ;
Iavarone, Alessandro ;
Manzo, Valentino ;
Carotenuto, Anna ;
Granata, Carmine ;
Hillebrand, Arjan ;
Sorrentino, Giuseppe .
FRONTIERS IN AGING NEUROSCIENCE, 2018, 10
[65]   The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods [J].
Jack, Clifford R., Jr. ;
Bernstein, Matt A. ;
Fox, Nick C. ;
Thompson, Paul ;
Alexander, Gene ;
Harvey, Danielle ;
Borowski, Bret ;
Britson, Paula J. ;
Whitwell, Jennifer L. ;
Ward, Chadwick ;
Dale, Anders M. ;
Felmlee, Joel P. ;
Gunter, Jeffrey L. ;
Hill, Derek L. G. ;
Killiany, Ron ;
Schuff, Norbert ;
Fox-Bosetti, Sabrina ;
Lin, Chen ;
Studholme, Colin ;
DeCarli, Charles S. ;
Krueger, Gunnar ;
Ward, Heidi A. ;
Metzger, Gregory J. ;
Scott, Katherine T. ;
Mallozzi, Richard ;
Blezek, Daniel ;
Levy, Joshua ;
Debbins, Josef P. ;
Fleisher, Adam S. ;
Albert, Marilyn ;
Green, Robert ;
Bartzokis, George ;
Glover, Gary ;
Mugler, John ;
Weiner, Michael W. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2008, 27 (04) :685-691
[66]  
Jagannatha A., 2016, Bidirectional Recurrent Neural Networks for Medical Event Detection in Electronic Health Records, P473
[67]  
Jawanpuria P. K., 2015, Advances in Neural Information Processing Systems, P1189
[68]  
KaiWang Youjin Zhao, 2016, SCI PROGRESS-UK, V2016
[69]  
Kendall Alex, WHAT UNCERTAINTIES W
[70]   Focal Onset Seizure Prediction Using Convolutional Networks [J].
Khan, Haidar ;
Marcuse, Lara ;
Fields, Madeline ;
Swann, Kalina ;
Yener, Bulent .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2018, 65 (09) :2109-2118