The accuracy of an HDG method for conservative fractional diffusion equations

被引:4
作者
Karaaslan, Mehmet Fatih [1 ]
机构
[1] Yildiz Tech Univ, Dept Stat, Istanbul, Turkey
关键词
Caputo derivative; conservative-fractional diffusion equation; hybridization; hybridizable discontinuous Galerkin methods; FINITE-ELEMENT-METHOD; DISPERSION;
D O I
10.1002/mma.5282
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce and investigate the performance of a hybridizable discontinuous Galerkin (HDG) method for approximating the solution of conservative fractional diffusion equations (CFDE). The main attractive feature of these methods is the fact that the only globally coupled unknowns are those at the element boundaries. We first introduce the HDG method for the CFDE and prove the existence and uniqueness of the numerical solution provided that the stabilization parameter is strictly positive. We provide extensive numerical results to test the convergence behavior of the HDG approximation.
引用
收藏
页码:8201 / 8211
页数:11
相关论文
共 20 条
[11]   A hybridizable discontinuous Galerkin method for a class of fractional boundary value problems [J].
Karaaslan, Mehmet Fatih ;
Celiker, Fatih ;
Kurulay, Muhammet .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 333 :20-27
[12]   Approximate solution of the Bagley-Torvik equation by hybridizable discontinuous Galerkin methods [J].
Karaaslan, Mehmet Fatih ;
Celiker, Fatih ;
Kurulay, Muhammet .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 285 :51-58
[13]   Finite difference approximations for fractional advection-dispersion flow equations [J].
Meerschaert, MM ;
Tadjeran, C .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 172 (01) :65-77
[14]   Convergence and superconvergence analyses of HDG methods for time fractional diffusion problems [J].
Mustapha, Kassem ;
Nour, Maher ;
Cockburn, Bernardo .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2016, 42 (02) :377-393
[15]   Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations [J].
Mustapha, Kassem ;
Schoetzau, Dominik .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2014, 34 (04) :1426-1446
[16]   Accuracy of Finite Element Methods for Boundary-Value Problems of Steady-State Fractional Diffusion Equations [J].
Wang, Hong ;
Yang, Danping ;
Zhu, Shengfeng .
JOURNAL OF SCIENTIFIC COMPUTING, 2017, 70 (01) :429-449
[17]   A Petrov-Galerkin finite element method for variable-coefficient fractional diffusion equations [J].
Wang, Hong ;
Yang, Danping ;
Zhu, Shengfeng .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 290 :45-56
[18]   INHOMOGENEOUS DIRICHLET BOUNDARY-VALUE PROBLEMS OF SPACE-FRACTIONAL DIFFUSION EQUATIONS AND THEIR FINITE ELEMENT APPROXIMATIONS [J].
Wang, Hong ;
Yang, Danping ;
Zhu, Shengfeng .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (03) :1292-1310
[19]   Fractional conservation of mass [J].
Wheatcraft, Stephen W. ;
Meerschaert, Mark M. .
ADVANCES IN WATER RESOURCES, 2008, 31 (10) :1377-1381
[20]   Space-fractional advection-dispersion equations with variable parameters: Diverse formulas, numerical solutions, and application to the Macrodispersion Experiment site data [J].
Zhang, Yong ;
Benson, David A. ;
Meerschaert, Mark M. ;
LaBolle, Eric M. .
WATER RESOURCES RESEARCH, 2007, 43 (05)