The accuracy of an HDG method for conservative fractional diffusion equations

被引:4
作者
Karaaslan, Mehmet Fatih [1 ]
机构
[1] Yildiz Tech Univ, Dept Stat, Istanbul, Turkey
关键词
Caputo derivative; conservative-fractional diffusion equation; hybridization; hybridizable discontinuous Galerkin methods; FINITE-ELEMENT-METHOD; DISPERSION;
D O I
10.1002/mma.5282
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce and investigate the performance of a hybridizable discontinuous Galerkin (HDG) method for approximating the solution of conservative fractional diffusion equations (CFDE). The main attractive feature of these methods is the fact that the only globally coupled unknowns are those at the element boundaries. We first introduce the HDG method for the CFDE and prove the existence and uniqueness of the numerical solution provided that the stabilization parameter is strictly positive. We provide extensive numerical results to test the convergence behavior of the HDG approximation.
引用
收藏
页码:8201 / 8211
页数:11
相关论文
共 20 条
[1]   Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives [J].
Almeida, Ricardo ;
Torres, Delfim F. M. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (03) :1490-1500
[2]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[3]  
[Anonymous], 2006, Journal of the Electrochemical Society
[4]   The fractional-order governing equation of Levy motion [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1413-1423
[5]   Fractional dispersion, Levy motion, and the MADE tracer tests [J].
Benson, DA ;
Schumer, R ;
Meerschaert, MM ;
Wheatcraft, SW .
TRANSPORT IN POROUS MEDIA, 2001, 42 (1-2) :211-240
[6]   A hybridizable discontinuous Galerkin method for fractional diffusion problems [J].
Cockburn, Bernardo ;
Mustapha, Kassem .
NUMERISCHE MATHEMATIK, 2015, 130 (02) :293-314
[7]   UNIFIED HYBRIDIZATION OF DISCONTINUOUS GALERKIN, MIXED, AND CONTINUOUS GALERKIN METHODS FOR SECOND ORDER ELLIPTIC PROBLEMS [J].
Cockburn, Bernardo ;
Gopalakrishnan, Jayadeep ;
Lazarov, Raytcho .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) :1319-1365
[8]   A PETROV-GALERKIN FINITE ELEMENT METHOD FOR FRACTIONAL CONVECTION-DIFFUSION EQUATIONS [J].
Jin, Bangti ;
Lazarov, Raytcho ;
Zhou, Zhi .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (01) :481-503
[9]   A FINITE ELEMENT METHOD WITH SINGULARITY RECONSTRUCTION FOR FRACTIONAL BOUNDARY VALUE PROBLEMS [J].
Jin, Bangti ;
Zhou, Zhi .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (05) :1261-1283
[10]   VARIATIONAL FORMULATION OF PROBLEMS INVOLVING FRACTIONAL ORDER DIFFERENTIAL OPERATORS [J].
Jin, Bangti ;
Lazarov, Raytcho ;
Pasciak, Joseph ;
Rundell, William .
MATHEMATICS OF COMPUTATION, 2015, 84 (296) :2665-2700