Asymptotic Behaviors of Intermediate Points in the Remainder of the Euler-Maclaurin Formula

被引:1
作者
Xu, Aimin [1 ]
Cen, Zhongdi [1 ]
机构
[1] Zhejiang Wanli Univ, Inst Math, Ningbo 315100, Zhejiang, Peoples R China
关键词
MEAN-VALUE THEOREM; INTEGRALS;
D O I
10.1155/2010/134392
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Euler-Maclaurin formula is a very useful tool in calculus and numerical analysis. This paper is devoted to asymptotic expansion of the intermediate points in the remainder of the generalized Euler-Maclaurin formula when the length of the integral interval tends to be zero. In the special case we also obtain asymptotic behavior of the intermediate point in the remainder of the composite trapezoidal rule.
引用
收藏
页数:8
相关论文
共 15 条
[1]   On the Lagrange remainder of the Taylor formula [J].
Abel, U .
AMERICAN MATHEMATICAL MONTHLY, 2003, 110 (07) :627-633
[2]   The differential mean value of divided differences [J].
Abel, Ulrich ;
Ivan, Mircea .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) :560-570
[3]   A circular interpretation of the Euler-Maclaurin formula [J].
Berrut, JP .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 189 (1-2) :375-386
[4]  
Comtet L., 1974, ADV COMBINATORICS
[5]  
Dedic L, 2003, MATH INEQUAL APPL, V6, P247
[6]  
ELLIOTT D, 1998, J AUSTR MATH SOC B, V40, pE77
[7]   Corrected Euler-Maclaurin's formulae [J].
Franjić I. ;
Pečarić J. .
Rendiconti del Circolo Matematico di Palermo, 2005, 54 (2) :259-272
[8]   ON THE MEAN-VALUE THEOREM FOR INTEGRALS [J].
JACOBSON, B .
AMERICAN MATHEMATICAL MONTHLY, 1982, 89 (05) :300-301
[9]   Limit properties of differential mean values [J].
Powers, RC ;
Riedel, T ;
Sahoo, PK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 227 (01) :216-226
[10]   A generalization of the euler-maclaurin summation formula: An application to numerical computation of the fermi-dirac integrals [J].
Rzadkowski, Grzegorz ;
Lepkowski, Slawomir .
JOURNAL OF SCIENTIFIC COMPUTING, 2008, 35 (01) :63-74