Genetic dissection of interspecific differences in yeast thermotolerance

被引:30
作者
Weiss, Ca Rly, V [1 ]
Roop, Jeremy, I [1 ,6 ]
Hackley, Rylee K. [1 ,2 ,7 ]
Chuong, Julie N. [2 ]
Grigoriev, Igor, V [1 ,3 ]
Arkin, Adam P. [4 ,5 ]
Skerker, Jeffrey M. [4 ,5 ]
Brem, Rachel B. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA
[2] Buck Inst Res Aging, Novato, CA 94945 USA
[3] US DOE, Joint Genome Inst, Walnut Creek, CA USA
[4] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA
[5] Lawrence Berkeley Natl Lab, Berkeley, CA USA
[6] Fred Hutchinson Canc Res Ctr, 1124 Columbia St, Seattle, WA 98104 USA
[7] Duke Univ, Program Genet & Genom, Durham, NC USA
关键词
SACCHAROMYCES-CEREVISIAE; READ ALIGNMENT; BUDDING YEAST; EVOLUTION; GENOMICS; IDENTIFICATION; POPULATION; SPECIATION; TRAITS; SCREEN;
D O I
10.1038/s41588-018-0243-4
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Some of the most unique and compelling survival strategies in the natural world are fixed in isolated species(1). To date, molecular insight into these ancient adaptations has been limited, as classic experimental genetics has focused on inter-fertile individuals in populations(2). Here we use a new mapping approach, which screens mutants in a sterile interspecific hybrid, to identify eight housekeeping genes that underlie the growth advantage of Saccharomyces cerevisiae over its distant relative Saccharomyces paradoxus at high temperature. Pro-thermotolerance alleles at these mapped loci were required for the adaptive trait in S. cerevisiae and sufficient for its partial reconstruction in S. paradoxus. The emerging picture is one in which S. cerevisiae improved the heat resistance of multiple components of the fundamental growth machinery in response to selective pressure. Our study lays the groundwork for the mapping of genotype to phenotype in clades of sister species across Eukarya.
引用
收藏
页码:1501 / +
页数:6
相关论文
共 36 条
[1]  
[Anonymous], 1987, Science, Philosophy, and Human Behavior in the Soviet Union
[2]  
Camilli A., 2014, CURR PROTOC MOL BIOL, V106
[3]  
ESHED Y, 1995, GENETICS, V141, P1147
[4]   Finding the molecular basis of quantitative traits: Successes and pitfalls [J].
Flint, J ;
Mott, R .
NATURE REVIEWS GENETICS, 2001, 2 (06) :437-445
[5]   Evidence for Divergent Evolution of Growth Temperature Preference in Sympatric Saccharomyces Species [J].
Goncalves, Paula ;
Valerio, Elisabete ;
Correia, Claudia ;
de Almeida, Joao M. G. C. F. ;
Sampaio, Jose Paulo .
PLOS ONE, 2011, 6 (06)
[6]   The dynamics of molecular evolution over 60,000 generations [J].
Good, Benjamin H. ;
McDonald, Michael J. ;
Barrick, Jeffrey E. ;
Lenski, Richard E. ;
Desai, Michael M. .
NATURE, 2017, 551 (7678) :45-+
[7]   A screen for recessive speciation genes expressed in the gametes of F1 hybrid yeast [J].
Greig, Duncan .
PLOS GENETICS, 2007, 3 (02) :281-286
[8]   A new efficient gene disruption cassette for repeated use in budding yeast [J].
Guldener, U ;
Heck, S ;
Fiedler, T ;
Beinhauer, J ;
Hegemann, JH .
NUCLEIC ACIDS RESEARCH, 1996, 24 (13) :2519-2524
[9]   SACCHAROMYCES-CEREVISIAE CELL-CYCLE [J].
HARTWELL, LH .
BACTERIOLOGICAL REVIEWS, 1974, 38 (02) :164-198
[10]   MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability [J].
Katoh, Kazutaka ;
Standley, Daron M. .
MOLECULAR BIOLOGY AND EVOLUTION, 2013, 30 (04) :772-780