Deciding stability and mortality of piecewise affine dynamical systems

被引:39
作者
Blondel, VD
Bournez, O
Koiran, P
Papadimitriou, CH
Tsitsiklis, JN
机构
[1] Univ Catholique Louvain, CESAME, B-1348 Louvain, Belgium
[2] LORIA, F-54506 Vandoeuvre Nancy, France
[3] Ecole Normale Super Lyon, LIP, F-69364 Lyon, France
[4] Univ Calif Berkeley, Dept Comp Sci, Berkeley, CA 94720 USA
[5] MIT, LIDS, Cambridge, MA 02139 USA
关键词
discrete dynamical systems; piecewise affine systems; piecewise linear systems; hybrid systems; mortality; stability; decidability;
D O I
10.1016/S0304-3975(00)00399-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we study problems such as: given a discrete time dynamical system of the form x(t + 1)= f(x(t)) where f: R-n --> R-n is a piecewise affine function, decide whether all trajectories converge to 0. We show in our main theorem that this Attractivity Problem is undecidable as soon as n greater than or equal to2. The same is true of two related problems: Stability (is the dynamical system globally asymptotically stable?) and Mortality (do all trajectories go through 0?). We then show that AM-activity and Stability become decidable in dimension 1 for continuous functions. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:687 / 696
页数:10
相关论文
共 17 条
[1]   THE ALGORITHMIC ANALYSIS OF HYBRID SYSTEMS [J].
ALUR, R ;
COURCOUBETIS, C ;
HALBWACHS, N ;
HENZINGER, TA ;
HO, PH ;
NICOLLIN, X ;
OLIVERO, A ;
SIFAKIS, J ;
YOVINE, S .
THEORETICAL COMPUTER SCIENCE, 1995, 138 (01) :3-34
[2]   REACHABILITY ANALYSIS OF DYNAMICAL-SYSTEMS HAVING PIECEWISE-CONSTANT DERIVATIVES [J].
ASARIN, E ;
MALER, O ;
PNUELI, A .
THEORETICAL COMPUTER SCIENCE, 1995, 138 (01) :35-65
[3]  
Blondel VD, 2000, LECT NOTES COMPUT SC, V1770, P479
[4]   A survey of computational complexity results in systems and control [J].
Blondel, VD ;
Tsitsiklis, JN .
AUTOMATICA, 2000, 36 (09) :1249-1274
[5]   Complexity of stability and controllability of elementary hybrid systems [J].
Blondel, VD ;
Tsitsiklis, JN .
AUTOMATICA, 1999, 35 (03) :479-489
[6]   On the computational power of dynamical systems and hybrid systems [J].
Bournez, O ;
Cosnard, M .
THEORETICAL COMPUTER SCIENCE, 1996, 168 (02) :417-459
[7]  
HENZINGER T, 1995, P 27 ACM S THEOR COM
[8]  
HOOPER P, 1966, J SYMBOLIC LOGIC, V2, P219
[9]  
Hopcroft J.E., 1969, Formal Languages and Their Relation To Automata
[10]  
HYOTYNIEMU H, 1997, P ECC C BRUSS