Well controlled assembly of silicon nanowires by nanowire transfer method

被引:33
作者
Lee, Kook-Nyung [1 ]
Jung, Suk-Won [1 ]
Kim, Won-Hyo [1 ]
Lee, Min-Ho [1 ]
Shin, Kyu-Sik [1 ]
Seong, Woo-Kyeong [1 ]
机构
[1] Korea Elect Technol Inst, Songnam 463816, Gyeonggi Do, South Korea
关键词
D O I
10.1088/0957-4484/18/44/445302
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Efforts to date in silicon nanowire research have primarily focused on the nanowire synthesis and the demonstration of individual nanowire-based devices exhibiting interdisciplinary potential spanned from electrical ( Duan et al 2003 Nature 425 274-8; Cui and Lieber 2001 Science 291 851-3; Morales and Lieber 1998 Science 279 208-11) through biomedical applications ( Cui et al 2003 Science 293 1289-92; Zheng et al 2005 Nature Biotechnol. 23 1294-301). However, the realization of integrated nanowire devices requires well ordered assembly of a silicon nanowire ( Huang et al 2001 Science 291 630-3; Whang et al 2003 Nano Lett. 3 1255-9) as well as simple and cost effective fabrication. Here we describe a simple fabrication scheme and a large-scale assembly of silicon nanowires by combining top-down fabrication with nanowire transfer onto another insulator substrate for device manufacture. Our innovative fabrication method enables us to obtain well defined silicon nanowires as a freestanding bridge structure with a diameter of 20-200 nm and a length varying from 5 to 100 mu m using micro-machining processes. Direct transfer of the freestanding nanowires simply provides large-scale assembly of silicon nanowire on various substrates for highly integrated devices such as high-performance thin-film transistors (TFTs) ( Duan et al 2003 Nature 425 274-8; Ishihara et al 2003 Thin Solid Films 427 77-85) and nanowire-based electronics ( Cui and Lieber 2001 Science 291 851-3). Electrical transport properties of the transferred silicon nanowire were also investigated.
引用
收藏
页数:7
相关论文
共 28 条
[1]   Assembly of Ni/γ-Fe2O3 shell/core nanowires [J].
Chen, Y ;
Yan, H ;
Li, XH ;
Li, W ;
Zhang, JW ;
Zhang, XY .
MATERIALS LETTERS, 2006, 60 (02) :245-247
[2]   Sub-lithographic patterning technology for nanowire model catalysts and DNA label-free hybridization detection [J].
Choi, YK ;
Grunes, J ;
Lee, JS ;
Zhu, J ;
Somorjai, GA ;
Lee, LP ;
Bokor, J .
NANOFABRICATION TECHNOLOGIES, 2003, 5220 :10-19
[3]   Functional nanoscale electronic devices assembled using silicon nanowire building blocks [J].
Cui, Y ;
Lieber, CM .
SCIENCE, 2001, 291 (5505) :851-853
[4]   Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J].
Cui, Y ;
Wei, QQ ;
Park, HK ;
Lieber, CM .
SCIENCE, 2001, 293 (5533) :1289-1292
[5]   Doping and electrical transport in silicon nanowires [J].
Cui, Y ;
Duan, XF ;
Hu, JT ;
Lieber, CM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (22) :5213-5216
[6]  
DEAL BE, 1965, J APPL PHYS, V36, P3370
[7]   High-performance thin-film transistors using semiconductor nanowires and nanoribbons [J].
Duan, XF ;
Niu, CM ;
Sahi, V ;
Chen, J ;
Parce, JW ;
Empedocles, S ;
Goldman, JL .
NATURE, 2003, 425 (6955) :274-278
[8]   Synthesis and optical properties of gallium arsenide nanowires [J].
Duan, XF ;
Wang, JF ;
Lieber, CM .
APPLIED PHYSICS LETTERS, 2000, 76 (09) :1116-1118
[9]   Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices [J].
Duan, XF ;
Huang, Y ;
Cui, Y ;
Wang, JF ;
Lieber, CM .
NATURE, 2001, 409 (6816) :66-69
[10]   Integrated nanoscale silicon sensors using top-down fabrication [J].
Elibol, OH ;
Morisette, D ;
Akin, D ;
Denton, JP ;
Bashir, R .
APPLIED PHYSICS LETTERS, 2003, 83 (22) :4613-4615