Canopy Cover Estimation Based on LiDAR and Landsat 8 Data using Support Vector Regression

被引:0
作者
Tampinongkol, Felliks Feiters [1 ]
Setiawan, Yudi [2 ]
Nursalam, Wim Iqbal [3 ]
Hudjimartsu, Sahid [4 ]
Prasetyo, Lilik Budi [2 ]
机构
[1] Univ Bunda Mulia, Dept Informat, Jl Ancol Barat IV, Jakarta 14430, Indonesia
[2] IPB Univ, Dept Forest Resource Conservat, Jl Raya Dramaga, Bogor 16680, Indonesia
[3] IPB Univ, Environm Anal & Spatial Modeling Lab, Forests2020 Programme, Jl Raya Dramaga, Bogor 16680, Indonesia
[4] Ibn Khaldun Univ, Geoinformat Informat Engn Dept, Jl KH Soleh Iskandar KM 2, Bogor, Indonesia
来源
PROCEEDINGS OF 2021 INTERNATIONAL CONFERENCE ON DATA AND SOFTWARE ENGINEERING (ICODSE): DATA AND SOFTWARE ENGINEERING FOR SUPPORTING SUSTAINABLE DEVELOPMENT GOALS | 2021年
关键词
Canopy cover; Landsat; 8; OLI; LiDAR; Machine learning; Support vector; SVR; AIRBORNE LIDAR;
D O I
10.1109/ICoDSE53690.2021.9648453
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Indonesia has large areas of forest that spread in almost every island of Indonesia. Forest in Indonesia also have various types of ecosystem, therefore they have an important role to protect each element contained within the ecosystem. The forest monitoring system in Indonesia still using the traditional approach for monitoring forests areas. This paper aims to generate a prediction model using remote sensing data and support vector regression for the model to estimate forest cover, especially in Indonesia. Landsat 8 OLI reflectance value from each band was used to estimate forest canopy cover with the integration of LiDAR data. The prediction model of forest canopy cover was observed at R-2 = 0.6921 and RMSE = 0.1658 of canopy cover. In this case R-2 means the correlation between LiDAR point cloud with Landsat bands. The SVR kernel used in this study was radial basis function with parameter (Cost: 10, Gamma: 1 and Epsilon: 0.1).
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Extending Airborne Lidar-Derived Estimates of Forest Canopy Cover and Height Over Large Areas Using kNN With Landsat Time Series Data
    Ahmed, Oumer S.
    Franklin, Steven E.
    Wulder, Michael A.
    White, Joanne C.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (08) : 3489 - 3496
  • [42] Forest canopy height estimation based on ICESat/GLAS data by airborne lidar
    Hu K.
    Liu Q.
    Pang Y.
    Li M.
    Mu X.
    Liu, Qingwang (liuqw@caf.ac.cn), 1600, Chinese Society of Agricultural Engineering (33): : 88 - 95
  • [43] MAPPING TREE CANOPY COVER AND CANOPY HEIGHT WITH L-BAND SAR USING LIDAR DATA AND RANDOM FORESTS
    Chen, Richard H.
    Pinto, Naiara
    Duan, Xueyang
    Tabatabaeenejad, Alireza
    Moghaddam, Mahta
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 4136 - 4139
  • [44] Example-Based Super-Resolution Land Cover Mapping Using Support Vector Regression
    Zhang, Yihang
    Du, Yun
    Ling, Feng
    Fang, Shiming
    Li, Xiaodong
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (04) : 1271 - 1283
  • [45] Estimation of Fractional Plant Lifeform Cover for the Conterminous United States Using Landsat Imagery and Airborne LiDAR
    Parra, Adriana
    Greenberg, Jonathan A.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [46] Estimation of Airborne Lidar-Derived Tropical Forest Canopy Height Using Landsat Time Series in Cambodia
    Ota, Tetsuji
    Ahmed, Oumer S.
    Franklin, Steven E.
    Wulder, Michael A.
    Kajisa, Tsuyoshi
    Mizoue, Nobuya
    Yoshida, Shigejiro
    Takao, Gen
    Hirata, Yasumasa
    Furuya, Naoyuki
    Sano, Takio
    Heng, Sokh
    Vuthy, Ma
    REMOTE SENSING, 2014, 6 (11) : 10750 - 10772
  • [47] MAPPING URBAN TREE CANOPY COVER USING FUSED AIRBORNE LIDAR AND SATELLITE IMAGERY DATA
    Parmehr, Ebadat G.
    Amati, Marco
    Fraser, Clive S.
    XXIII ISPRS CONGRESS, COMMISSION VII, 2016, 3 (07): : 181 - 186
  • [48] Completing the machine learning saga in fractional snow cover estimation from MODIS Terra reflectance data: Random forests versus support vector regression
    Kuter, Semih
    REMOTE SENSING OF ENVIRONMENT, 2021, 255
  • [49] Mapping mangrove forest using Landsat 8 to support estimation of land-based emissions in Kenya
    Kenduiywo, Benson Kipkemboi
    Mutua, Felix Nzive
    Ngigi, Thomas Gathungu
    Waithaka, Edward Hunja
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2020, 6 (03) : 1619 - 1632
  • [50] Estimation of forest aboveground biomass using combination of Landsat 8 and Sentinel-1A data with random forest regression algorithm in Himalayan Foothills
    Purohit, Saurabh
    Aggarwal, S. P.
    Patel, N. R.
    TROPICAL ECOLOGY, 2021, 62 (02) : 288 - 300