Canopy Cover Estimation Based on LiDAR and Landsat 8 Data using Support Vector Regression

被引:0
作者
Tampinongkol, Felliks Feiters [1 ]
Setiawan, Yudi [2 ]
Nursalam, Wim Iqbal [3 ]
Hudjimartsu, Sahid [4 ]
Prasetyo, Lilik Budi [2 ]
机构
[1] Univ Bunda Mulia, Dept Informat, Jl Ancol Barat IV, Jakarta 14430, Indonesia
[2] IPB Univ, Dept Forest Resource Conservat, Jl Raya Dramaga, Bogor 16680, Indonesia
[3] IPB Univ, Environm Anal & Spatial Modeling Lab, Forests2020 Programme, Jl Raya Dramaga, Bogor 16680, Indonesia
[4] Ibn Khaldun Univ, Geoinformat Informat Engn Dept, Jl KH Soleh Iskandar KM 2, Bogor, Indonesia
来源
PROCEEDINGS OF 2021 INTERNATIONAL CONFERENCE ON DATA AND SOFTWARE ENGINEERING (ICODSE): DATA AND SOFTWARE ENGINEERING FOR SUPPORTING SUSTAINABLE DEVELOPMENT GOALS | 2021年
关键词
Canopy cover; Landsat; 8; OLI; LiDAR; Machine learning; Support vector; SVR; AIRBORNE LIDAR;
D O I
10.1109/ICoDSE53690.2021.9648453
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Indonesia has large areas of forest that spread in almost every island of Indonesia. Forest in Indonesia also have various types of ecosystem, therefore they have an important role to protect each element contained within the ecosystem. The forest monitoring system in Indonesia still using the traditional approach for monitoring forests areas. This paper aims to generate a prediction model using remote sensing data and support vector regression for the model to estimate forest cover, especially in Indonesia. Landsat 8 OLI reflectance value from each band was used to estimate forest canopy cover with the integration of LiDAR data. The prediction model of forest canopy cover was observed at R-2 = 0.6921 and RMSE = 0.1658 of canopy cover. In this case R-2 means the correlation between LiDAR point cloud with Landsat bands. The SVR kernel used in this study was radial basis function with parameter (Cost: 10, Gamma: 1 and Epsilon: 0.1).
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Estimation of Soil Moisture with SAR Data in Large Area Based on Support Vector Regression
    Meng, Dexin
    Ma, Jianwei
    Xin, Jingfeng
    Sun, Yayong
    Huang, Shifeng
    Zhang, Furong
    THIRTEENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2021), 2021, 11878
  • [32] Characterizing global forest canopy cover distribution using spaceborne lidar
    Tang, Hao
    Armston, John
    Hancock, Steven
    Marselis, Suzanne
    Goetz, Scott
    Dubayah, Ralph
    REMOTE SENSING OF ENVIRONMENT, 2019, 231
  • [33] From simple linear regression to machine learning methods: Canopy cover modelling of a young forest using planet data
    Gyawali, Arun
    Adhikari, Hari
    Aalto, Mika
    Ranta, Tapio
    ECOLOGICAL INFORMATICS, 2024, 82
  • [34] FOREST CANOPY COVER ANALYSIS USING UAS LIDAR
    Liu, Qingwang
    Li, Shiming
    Hu, Kailong
    Pang, Yong
    Li, Zengyuan
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 2863 - 2866
  • [35] Support vector regression for high-resolution beach surface moisture estimation from terrestrial LiDAR intensity data
    Jin, Junling
    Verbeurgt, Jeffrey
    De Sloover, Lars
    Stal, Cornelis
    Deruyter, Greet
    Montreuil, Anne-Lise
    Vos, Sander
    De Maeyer, Philippe
    De Wulf, Alain
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 102
  • [36] Estimating Brazilian Amazon Canopy Height Using Landsat Reflectance Products in a Random Forest Model with Lidar as Reference Data
    Oliveira, Pedro V. C.
    Zhang, Hankui K.
    Zhang, Xiaoyang
    REMOTE SENSING, 2024, 16 (14)
  • [37] Synergistic use of Landsat 8 OLI image and airborne LiDAR data for above-ground biomass estimation in tropical lowland rainforests
    Phua, Mui-How
    Johari, Shazrul Azwan
    Wong, Ong Cieh
    Ioki, Keiko
    Mahali, Maznah
    Nilus, Reuben
    Coomes, David A.
    Maycock, Colin R.
    Hashim, Mazlan
    FOREST ECOLOGY AND MANAGEMENT, 2017, 406 : 163 - 171
  • [38] Classification of Landsat 8 OLI Image Using Support Vector Machine With Tasseled Cap Transformation
    Liu, Qingsheng
    Guo, Yushan
    Liu, Gaohuan
    Zhao, Jun
    2014 10TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2014, : 665 - 669
  • [39] Definition and measurement of tree cover: A comparative analysis of field-, lidar- and landsat-based tree cover estimations in the Sierra national forests, USA
    Tang, Hao
    Song, Xiao-Peng
    Zhao, Feng A.
    Strahler, Alan H.
    Schaaf, Crystal L.
    Goetz, Scott
    Huang, Chengquan
    Hansen, Matthew C.
    Dubayah, Ralph
    AGRICULTURAL AND FOREST METEOROLOGY, 2019, 268 : 258 - 268
  • [40] Characterizing stand-level forest canopy cover and height using Landsat time series, samples of airborne LiDAR, and the Random Forest algorithm
    Ahmed, Oumer S.
    Franklin, Steven E.
    Wulder, Michael A.
    White, Joanne C.
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2015, 101 : 89 - 101