Canopy Cover Estimation Based on LiDAR and Landsat 8 Data using Support Vector Regression

被引:0
作者
Tampinongkol, Felliks Feiters [1 ]
Setiawan, Yudi [2 ]
Nursalam, Wim Iqbal [3 ]
Hudjimartsu, Sahid [4 ]
Prasetyo, Lilik Budi [2 ]
机构
[1] Univ Bunda Mulia, Dept Informat, Jl Ancol Barat IV, Jakarta 14430, Indonesia
[2] IPB Univ, Dept Forest Resource Conservat, Jl Raya Dramaga, Bogor 16680, Indonesia
[3] IPB Univ, Environm Anal & Spatial Modeling Lab, Forests2020 Programme, Jl Raya Dramaga, Bogor 16680, Indonesia
[4] Ibn Khaldun Univ, Geoinformat Informat Engn Dept, Jl KH Soleh Iskandar KM 2, Bogor, Indonesia
来源
PROCEEDINGS OF 2021 INTERNATIONAL CONFERENCE ON DATA AND SOFTWARE ENGINEERING (ICODSE): DATA AND SOFTWARE ENGINEERING FOR SUPPORTING SUSTAINABLE DEVELOPMENT GOALS | 2021年
关键词
Canopy cover; Landsat; 8; OLI; LiDAR; Machine learning; Support vector; SVR; AIRBORNE LIDAR;
D O I
10.1109/ICoDSE53690.2021.9648453
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Indonesia has large areas of forest that spread in almost every island of Indonesia. Forest in Indonesia also have various types of ecosystem, therefore they have an important role to protect each element contained within the ecosystem. The forest monitoring system in Indonesia still using the traditional approach for monitoring forests areas. This paper aims to generate a prediction model using remote sensing data and support vector regression for the model to estimate forest cover, especially in Indonesia. Landsat 8 OLI reflectance value from each band was used to estimate forest canopy cover with the integration of LiDAR data. The prediction model of forest canopy cover was observed at R-2 = 0.6921 and RMSE = 0.1658 of canopy cover. In this case R-2 means the correlation between LiDAR point cloud with Landsat bands. The SVR kernel used in this study was radial basis function with parameter (Cost: 10, Gamma: 1 and Epsilon: 0.1).
引用
收藏
页数:4
相关论文
共 50 条
  • [21] SINGLE STRATA CANOPY COVER ESTIMATION USING AIRBORNE LASER SCANNING DATA
    Ferraz, Antonio
    Mallet, Clement
    Goncalves, Gil
    Tome, Margarida
    Soares, Paula
    Pereira, Luisa
    Jacquemoud, Stephane
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 184 - 187
  • [22] Data selection using support vector regression
    Richman, Michael B.
    Leslie, Lance M.
    Trafalis, Theodore B.
    Mansouri, Hicham
    ADVANCES IN ATMOSPHERIC SCIENCES, 2015, 32 (03) : 277 - 286
  • [23] Data Selection Using Support Vector Regression
    Michael B.RICHMAN
    Lance M.LESLIE
    Theodore B.TRAFALIS
    Hicham MANSOURI
    Advances in Atmospheric Sciences, 2015, 32 (03) : 277 - 286
  • [24] Data selection using support vector regression
    Michael B. Richman
    Lance M. Leslie
    Theodore B. Trafalis
    Hicham Mansouri
    Advances in Atmospheric Sciences, 2015, 32 : 277 - 286
  • [25] Multiscale divergence between Landsat- and lidar-based biomass mapping is related to regional variation in canopy cover and composition
    David M. Bell
    Matthew J. Gregory
    Van Kane
    Jonathan Kane
    Robert E. Kennedy
    Heather M. Roberts
    Zhiqiang Yang
    Carbon Balance and Management, 13
  • [26] Multiscale divergence between Landsat- and lidar-based biomass mapping is related to regional variation in canopy cover and composition
    Bell, David M.
    Gregory, Matthew J.
    Kane, Van
    Kane, Jonathan
    Kennedy, Robert E.
    Roberts, Heather M.
    Yang, Zhiqiang
    CARBON BALANCE AND MANAGEMENT, 2018, 13
  • [27] LAND COVER CLASSIFICATION FROM FULL-WAVEFORM LIDAR DATA BASED ON SUPPORT VECTOR MACHINES
    Zhou, M.
    Li, C. R.
    Ma, L.
    Guan, H. C.
    XXIII ISPRS CONGRESS, COMMISSION III, 2016, 41 (B3): : 447 - 452
  • [28] Integrating profiling LIDAR with Landsat data for regional boreal forest canopy attribute estimation and change characterization
    Wulder, Michael A.
    Han, Tian
    White, Joanne C.
    Sweda, Tatsuo
    Tsuzuki, Hayato
    REMOTE SENSING OF ENVIRONMENT, 2007, 110 (01) : 123 - 137
  • [29] Estimation of uneven-aged forest stand parameters, crown closure and land use/cover using the Landsat 8 OLI satellite image
    Kaptan, Sinan
    Aksoy, Hasan
    Durkaya, Birsen
    GEOCARTO INTERNATIONAL, 2022, 37 (05) : 1408 - 1425
  • [30] Advanced signal processing based on support vector regression for LIDAR applications
    Gelfusa, M.
    Murari, A.
    Malizia, A.
    Lungaroni, M.
    Peluso, E.
    Parracino, S.
    Talebzadeh, S.
    Vega, J.
    Gaudio, P.
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXI, 2015, 9643