The role of SiC as a diffusion barrier in the formation of graphene on Si(111)

被引:4
作者
Pham, Trung T. [1 ,2 ]
Santos, Cristiane N. [3 ]
Joucken, Frederic [1 ]
Hackens, Benoit [3 ]
Raskin, Jean-Pierre [4 ]
Sporken, Robert [1 ]
机构
[1] Univ Namur FUNDP, Res Ctr Phys Matter & Radiat PMR, 61 Rue Bruxelles, B-5000 Namur, Belgium
[2] HCMC Univ Technol & Educ, Dept Phys, 01 Vo Van Ngan,Dist 9, Ho Chi Minh City, Vietnam
[3] Catholic Univ Louvain, Nanoscop Phys NAPS, IMCN, 2 Chemin Cyclotron, Louvain, Belgium
[4] Catholic Univ Louvain, Inst Informat & Commun Technol Elect & Appl Math, 3 Pl Levant, Louvain, Belgium
关键词
Graphene on Si; Graphitic carbon; Si(111) substrate; Electron beam evaporation; EPITAXIAL GRAPHENE; GROWTH; SILICON; TEMPERATURE; SUBSTRATE; CRYSTAL; FILMS; C-60;
D O I
10.1016/j.diamond.2016.04.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we investigate the role of SiC as a diffusion barrier for Si in the formation of graphene on Si(111) via direct deposition of solid-state carbon atoms in ultra-high vacuum. Therefore, various thicknesses of the SiC layer preformed on the Si substrates were produced in order to evaluate its influence on the quality of graphene formation at different substrate temperatures from 900 degrees C to 1100 degrees C. At a given temperature of 1100 degrees C, we found that a thicker SiC layer can suppress silicon-out diffusion from the substrate and improve the structural quality of the graphene layer. The samples were analyzed by low energy electron diffraction, Auger electron spectroscopy, X-ray photoemission spectroscopy, Raman spectroscopy, and scanning tunneling microscopy. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:141 / 148
页数:8
相关论文
共 43 条
[1]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[2]   Graphene formation mechanisms on 4H-SiC(0001) [J].
Bolen, Michael L. ;
Harrison, Sara E. ;
Biedermann, Laura B. ;
Capano, Michael A. .
PHYSICAL REVIEW B, 2009, 80 (11)
[3]   General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy [J].
Cançado, LG ;
Takai, K ;
Enoki, T ;
Endo, M ;
Kim, YA ;
Mizusaki, H ;
Jorio, A ;
Coelho, LN ;
Magalhaes-Paniago, R ;
Pimenta, MA .
APPLIED PHYSICS LETTERS, 2006, 88 (16)
[4]   Crystal Quality of 3C-SiC Influenced by the Diffusion Step in the Modified Four-Step Method [J].
Chen, Wei-Yu ;
Wang, Wei-Lin ;
Liu, Jui-Min ;
Chen, Chien-Cheng ;
Hwang, Jenn-Chang ;
Huang, Chih-Fang ;
Chang, Li .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (03) :H377-H380
[5]   Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide [J].
de Heer, Walt A. ;
Berger, Claire ;
Ruan, Ming ;
Sprinkle, Mike ;
Li, Xuebin ;
Hu, Yike ;
Zhang, Baiqian ;
Hankinson, John ;
Conrad, Edward .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (41) :16900-16905
[6]  
Dubey Madan, 2013, GRAPHENE BASED NANOE
[7]   Chemically Resolved Interface Structure of Epitaxial Graphene on SiC(0001) [J].
Emery, Jonathan D. ;
Detlefs, Blanka ;
Karmel, Hunter J. ;
Nyakiti, Luke O. ;
Gaskill, D. Kurt ;
Hersam, Mark C. ;
Zegenhagen, Joerg ;
Bedzyk, Michael J. .
PHYSICAL REVIEW LETTERS, 2013, 111 (21)
[8]   Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: A comparative photoelectron spectroscopy study [J].
Emtsev, K. V. ;
Speck, F. ;
Seyller, Th. ;
Ley, L. ;
Riley, J. D. .
PHYSICAL REVIEW B, 2008, 77 (15)
[9]   Atomic scale flattening, step formation and graphitization blocking on 6H-and 4H-SiC{0001} surfaces under Si flux [J].
Ferrer, F. J. ;
Moreau, E. ;
Vignaud, D. ;
Godey, S. ;
Wallart, X. .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2009, 24 (12)
[10]   Epitaxial Growth Processes of Graphene on Silicon Substrates [J].
Fukidome, Hirokazu ;
Miyamoto, Yu ;
Handa, Hiroyuki ;
Saito, Eiji ;
Suemitsu, Maki .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2010, 49 (01)