An integral operator involving generalized Mittag-Leffler function and associated fractional calculus results

被引:10
作者
Bansal, M. K. [1 ]
Jolly, N. [2 ]
Jain, R. [2 ]
Kumar, Devendra [3 ]
机构
[1] Govt Engn Coll, Dept Appl Sci, Banswara 327001, Rajasthan, India
[2] Malaviya Natl Inst Technol, Dept Math, Jaipur 302017, Rajasthan, India
[3] Univ Rajasthan, Dept Math, Jaipur 302004, Rajasthan, India
关键词
Mittag-Leffler function; Generalized Beta function; Hilfer derivative; Integral operator; 33E12; 33B15; 36A33; 47G10; NUMERICAL ALGORITHM; EQUATION;
D O I
10.1007/s41478-018-0119-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we first introduce and investigate the generalized extended Mittag-Leffler (GEML) function which is represented in the following manner: and propose some of it's integral representations. Next, we present fractional calculus of function of our study. Further, we introduce and study an integral operator whose kernel is generalized extended Mittag-Leffler (GEML) function and point out it's known special cases. Next, we derive some properties of aforementioned integral operator which includes it's composition relationship with right-sided Riemann-Liouville fractional integral operator Ia+gamma and boundedness. Finally, we obtain image of (tau-a)alpha-1 Phi lj;upsilon jQkj;rho jP(beta tau,s,a) under integral operator of our study. The results derived in this paper generalizes the results obtained by ozarslan and Yilmaz (J Inequal Appl 85:1-10, 2014) and Rahman et al. (Sociedad Matematica Mexican. https://doi.org/10.1007/s40590-017-0167-5, 2017).
引用
收藏
页码:727 / 740
页数:14
相关论文
共 31 条
[1]  
[Anonymous], 2010, SPECIAL FUNCTIONS AP
[2]   On the Generalized Mittag-Leffler Function and its Application in a Fractional Telegraph Equation [J].
Camargo, Rubens Figueiredo ;
de Oliveira, Edmundo Capelas ;
Vaz, Jayme, Jr. .
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2012, 15 (01) :1-16
[3]  
Dzherbashian M.M., 1966, Integral Transforms and Representation of Functions in the Complex Domain
[4]  
Gorenflo R, 1998, PROCEEDINGS OF THE EIGHTH INTERNATIONAL COLLOQUIUM ON DIFFERENTIAL EQUATIONS, P195
[5]  
Gorenflo R., 1997, FRACTIONAL CALCULUS, P223, DOI DOI 10.1007/978-3-7091-2664-6_5
[6]  
Hilfer R., 2000, APPL FRACTIONAL CALC
[7]  
Hilfer R., 2000, Applications of Fractional Calculus in Physics, DOI DOI 10.1142/3779
[8]  
Kilbas A.A., 2006, North-Holland Mathematics Studies, V204
[9]   On Mittag-Leffler type function, fractional calculus operators and solutions of integral equations [J].
Kilbas, AA ;
Saigo, M .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1996, 4 (04) :355-370
[10]   Generalized Mittag-Leffler function and generalized fractional calculus operators [J].
Kilbas, AA ;
Saigo, M ;
Saxena, RK .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2004, 15 (01) :31-49