[GaN(Mg)-Cs]:[O-Cs] model for the Negative Electron Affinity GaN (0001) surface

被引:9
|
作者
Wang, Xiaohui [1 ]
Zhang, Yijun [2 ]
Yu, He [1 ]
Wu, Jieyun [3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Optoelect Informat, Chengdu 610054, Peoples R China
[2] Nanjing Univ Sci & Technol, Inst Elect Engn & Optoelect Technol, Nanjing 210094, Jiangsu, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Commun & Informat Engn, Chengdu 610054, Peoples R China
来源
OPTIK | 2016年 / 127卷 / 19期
基金
中国国家自然科学基金;
关键词
Negative Electron Affinity; GaN Photocathode; Photoemission Model; ACTIVATION LAYER; ADSORPTION-KINETICS; ESCAPE PROBABILITY; GAAS PHOTOCATHODES; CS; GAAS(100); RECONSTRUCTIONS; INTERFACE; OXYGEN; AUGER;
D O I
10.1016/j.ijleo.2016.05.140
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Because of the limitations of the existing Negative Electron Affinity (NEA) photocathode surface emission models, [GaN(Mg)-Cs]:[O-Cs] photoemission model based on dual-dipole model is established, which can explain the photoemission mechanism of the NEA GaN photocathode well. Cs, O adsorption process on the GaN (0001) surface during the activation is discussed, and the GaN(Mg)-Cs dipole layer is found having a unified direction which is conducive for photoelectron escaping, so photocurrent has a significant increase when Cs is introduced. There is not a unified direction for the O-Cs dipole layer. Because of the surface defects, part of the O-Cs dipoles have the direction which is conducive for photoelectron escaping, and the photocurrent has a modest growth after introducing O. Finally, the performance of GaN and GaAs photocathode are compared based on the photoemission model, and the reason of better stability of NEA GaN photocathode is interpreted. (C) 2016 Elsevier GmbH. All rights reserved.
引用
收藏
页码:7611 / 7624
页数:14
相关论文
共 50 条
  • [31] Progress in study of negative electron affinity GaN vacuum surface electron source
    Qiao Jian-Liang
    Chang Ben-Kang
    Qian Yun-Sheng
    Gao Pin
    Wang Xiao-Hui
    Xu Yuan
    ACTA PHYSICA SINICA, 2011, 60 (10)
  • [32] STRUCTURAL MODEL FOR THE NEGATIVE ELECTRON-AFFINITY SURFACE OF O/CS/SI(001)2X1
    ABUKAWA, T
    KONO, S
    SAKAMOTO, T
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1989, 28 (02): : L303 - L305
  • [33] Photoelectron spectroscopy of electronic surface structure of the Cs/GaN and Cs/InN interfaces
    Timoshnev, Sergei
    Benemanskaya, Galina
    Iluridze, Georgi
    Minashvili, Tamaz
    SURFACE AND INTERFACE ANALYSIS, 2020, 52 (10) : 620 - 625
  • [34] Progress of negative electron affinity GaN photocathode
    Fu Xiao-Qian
    Chang Ben-Kang
    Li Biao
    Wang Xiao-Hui
    Qiao Jian-Liang
    ACTA PHYSICA SINICA, 2011, 60 (03)
  • [35] Charge accumulation layers and surface states in ultrathin Cs,Ba/n-GaN(0001) interfaces
    Benemanskaya, G. V.
    Frank-Kamentskaya, G. E.
    Shmidt, N. M.
    Dunaevskii, M. S.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2006, 103 (03) : 441 - 448
  • [36] Charge accumulation layers and surface states in ultrathin Cs,Ba/n-GaN(0001) interfaces
    G. V. Benemanskaya
    G. E. Frank-Kamentskaya
    N. M. Shmidt
    M. S. Dunaevskiĭ
    Journal of Experimental and Theoretical Physics, 2006, 103 : 441 - 448
  • [37] Research on Cs activation mechanism for Ga0.5Al0.5As(001) and GaN(0001) surface
    Shen, Yang
    Chen, Liang
    Qian, Yunsheng
    Dong, Yanyan
    Zhang, Shuqin
    Wang, Meishan
    APPLIED SURFACE SCIENCE, 2015, 324 : 300 - 303
  • [38] Comparative study of adsorption characteristics of Cs on the GaN (0001) and GaN (000(1)over-bar) surfaces
    Du Yu-Jie
    Chang Ben-Kang
    Wang Hong-Gang
    Zhang Jun-Ju
    Wang Mei-Shan
    CHINESE PHYSICS B, 2012, 21 (06)
  • [39] Properties of Si/Cs/O nanocluster thin films with negative electron affinity
    Dinh, LN
    McLean, W
    Schildbach, MA
    Balooch, M
    FLAT-PANEL DISPLAYS AND SENSORS: PRINCIPLES, MATERIALS AND PROCESSES, 2000, 558 : 533 - 543
  • [40] The Electronic Structure of the Cs/n-GaN(0001) Nano-Interface
    Benemanskaya, G. V.
    Lapushkin, M. N.
    Marchenko, D. E.
    Timoshnev, S. N.
    TECHNICAL PHYSICS LETTERS, 2018, 44 (03) : 247 - 250