Super optimal rates for nonparametric density estimation via projection estimators

被引:9
作者
Comte, F
Merlevède, F
机构
[1] Univ Paris 05, MAP5, UMR 8145, CNRS, F-75270 Paris, France
[2] Univ Paris 06, Lab Probabil & Modeles Aleatoires, UMR 7599, CNRS, F-75252 Paris, France
关键词
Castellana-Leadbetter's condition; continuous time projection estimator; Markov processes; nonparametric estimation; local time; sampling;
D O I
10.1016/j.spa.2004.12.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study the problem of the nonparametric estimation of the marginal density f of a class of continuous time processes. To this aim, we use a projection estimator and deal with the integrated mean square risk. Under Castellana and Leadbetter's condition (Stoch. Proc. Appl. 21 (1986) 179), we show that our estimator reaches a parametric rate of convergence and coincides with the projection of the local time estimator. Discussions about the optimality of this condition are provided. We also deal with sampling schemes and the corresponding discretized processes. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:797 / 826
页数:30
相关论文
共 42 条