A SEMIPARAMETRIC BAYESIAN APPROACH TO NETWORK MODELLING USING DIRICHLET PROCESS PRIOR DISTRIBUTIONS

被引:6
作者
Ghosh, Pulak [2 ]
Gill, Paramjit [3 ]
Muthukumarana, Saman
Swartz, Tim [1 ]
机构
[1] Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC V5A 1S6, Canada
[2] Indian Inst Management, Dept Quantitat Methods & Informat Syst, Bangalore 560076, Karnataka, India
[3] Univ British Columbia Okanagan, Math Stat & Phys Unit, Irving K Barber Sch Arts & Sci, Kelowna, BC V1V 1V7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Bayesian semiparametric modelling; clustering; Dirichlet process; network models; social relations; WinBUGS software; ROUND ROBIN ANALYSIS; SOCIAL NETWORKS; DIRECTED-GRAPHS; MARKOV GRAPHS; VARIANCE; FAMILY;
D O I
10.1111/j.1467-842X.2010.00583.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
P>This paper considers the use of Dirichlet process prior distributions in the statistical analysis of network data. Dirichlet process prior distributions have the advantages of avoiding the parametric specifications for distributions, which are rarely known, and of facilitating a clustering effect, which is often applicable to network nodes. The approach is highlighted for two network models and is conveniently implemented using WinBUGS software.
引用
收藏
页码:289 / 302
页数:14
相关论文
共 34 条
  • [1] [Anonymous], 39 U WASH CTR STAT S
  • [2] [Anonymous], 1995, Markov Chain Monte Carlo in Practice
  • [3] BESAG J, 1974, J ROY STAT SOC B MET, V36, P192
  • [4] Besag Julian, 2001, 9 U WASH CTR STAT SO
  • [5] Computational methods for dynamic graphs
    Cortes, C
    Pregibon, D
    Volinsky, C
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2003, 12 (04) : 950 - 970
  • [6] CURRY TJ, 1970, SOCIOMETRY, V33, P216, DOI 10.2307/2786331
  • [7] PRIOR DISTRIBUTIONS ON SPACES OF PROBABILITY MEASURES
    FERGUSON, TS
    [J]. ANNALS OF STATISTICS, 1974, 2 (04) : 615 - 629
  • [8] MARKOV GRAPHS
    FRANK, O
    STRAUSS, D
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1986, 81 (395) : 832 - 842
  • [9] Gelfand AE., 1992, Bayesian Stat, V4, P147, DOI DOI 10.1093/OSO/9780198522669.003.0009
  • [10] Gill Paramjit S., 2007, American Journal of Mathematical and Management Sciences, V27, P73